Compare commits
No commits in common. "ab14be172f2a77a6d74e679050918371f49cf94a" and "f4626be14bdd7767d155102625c0d4b5eaa1d9f8" have entirely different histories.
ab14be172f
...
f4626be14b
7 changed files with 51 additions and 67 deletions
|
@ -39,6 +39,7 @@
|
|||
is not a well-order on a countable set.
|
||||
|
||||
Thus $\otp(\faktor{W}{\sim}, <) = \omega_1$.
|
||||
\todo{move this}
|
||||
\end{remark}
|
||||
}{}
|
||||
|
||||
|
|
|
@ -155,15 +155,6 @@ We have shown (assuming \AxC to choose contained clubs):
|
|||
= \bigcap_{\beta < \alpha} ([0,\beta] \cup A_\beta)
|
||||
\]
|
||||
\end{definition}
|
||||
\begin{remark}+
|
||||
\label{rem:diagiclosed}
|
||||
Note that if $A$ is closed,
|
||||
so is $[0,\alpha] \cup A$.
|
||||
Since the intersection of arbitrarily many
|
||||
closed sets is closed,
|
||||
we get that the diagonal intersection
|
||||
of closed sets is closed.
|
||||
\end{remark}
|
||||
\begin{lemma}
|
||||
\label{lem:diagiclub}
|
||||
Let $\kappa$ be a regular, uncountable cardinal.
|
||||
|
@ -190,23 +181,22 @@ We have shown (assuming \AxC to choose contained clubs):
|
|||
$\diagi_{\beta < \kappa} D_{\beta}$ is closed in $\kappa$.
|
||||
\end{claim}
|
||||
\begin{subproof}
|
||||
Cf.~\yaref{rem:diagiclosed}.
|
||||
% Let $\gamma < \kappa$ be such that $\left( \diagi_{\beta < \kappa} D_{\beta} \right) \cap \gamma$
|
||||
% is unbounded in $\gamma$.
|
||||
% We aim to show that $\gamma \in \diagi_{\beta < \kappa} D_{\beta}$.
|
||||
% Let $\beta_0 < \gamma$.
|
||||
% We need to see that $\gamma \in D_{\beta_0}$.
|
||||
Let $\gamma < \kappa$ be such that $\left( \diagi_{\beta < \kappa} D_{\beta} \right) \cap \gamma$
|
||||
is unbounded in $\gamma$.
|
||||
We aim to show that $\gamma \in \diagi_{\beta < \kappa} D_{\beta}$.
|
||||
Let $\beta_0 < \gamma$.
|
||||
We need to see that $\gamma \in D_{\beta_0}$.
|
||||
|
||||
% For each $\beta_0 \le \beta' < \gamma$
|
||||
% there is some $\beta'' \in \diagi_{\beta < \kappa} D_\beta$
|
||||
% such that $\beta' \le \beta'' < \gamma$,
|
||||
% since $\gamma = \sup((\diagi_{\beta < \kappa} D_\beta) \cap \gamma)$.
|
||||
% In particular $\beta'' \in D_{\beta_0}$.
|
||||
For each $\beta_0 \le \beta' < \gamma$
|
||||
there is some $\beta'' \in \diagi_{\beta < \kappa} D_\beta$
|
||||
such that $\beta' \le \beta'' < \gamma$,
|
||||
since $\gamma = \sup((\diagi_{\beta < \kappa} D_\beta) \cap \gamma)$.
|
||||
In particular $\beta'' \in D_{\beta_0}$.
|
||||
|
||||
% So $D_{\beta_0} \cap \gamma$
|
||||
% is unbounded in $\gamma$.
|
||||
% Since $D_{\beta_0}$ is closed
|
||||
% it follows that $\gamma \in D_{\beta_0}$.
|
||||
So $D_{\beta_0} \cap \gamma$
|
||||
is unbounded in $\gamma$.
|
||||
Since $D_{\beta_0}$ is closed
|
||||
it follows that $\gamma \in D_{\beta_0}$.
|
||||
|
||||
%As $\beta_0 < \gamma$ was arbitrary,
|
||||
%this shows that $\gamma \in \diagi_{\beta < n} D_\beta$.
|
||||
|
@ -280,9 +270,9 @@ We have shown (assuming \AxC to choose contained clubs):
|
|||
\end{refproof}
|
||||
\begin{remark}+
|
||||
$\diagi_{\beta < \kappa} C_{\beta}$ actually
|
||||
\emph{is} a club,
|
||||
since $\diagi_{\beta < \kappa} C_\beta$ is closed,
|
||||
again cf.~\yaref{rem:diagiclosed}.
|
||||
\emph{is} a club:
|
||||
It suffices to show that $\diagi_{\beta < \kappa} C_\beta$ is closed.
|
||||
This can be shown in the same way as for $\diagi_{\beta < \kappa} D_\beta$.
|
||||
% Let $\lambda < \kappa$ be a limit ordinal.
|
||||
% Suppose that $\lambda \not\in \diagi_{\beta < \kappa} D_\beta$.
|
||||
% Then there exists $\alpha < \lambda$ such that
|
||||
|
@ -298,20 +288,6 @@ We have shown (assuming \AxC to choose contained clubs):
|
|||
iff $C \cap S \neq \emptyset$
|
||||
for every club $C \subseteq \kappa$.
|
||||
\end{definition}
|
||||
\begin{remark}+[\url{https://mathoverflow.net/q/37503}]
|
||||
Informally, club sets and stationary sets
|
||||
can be viewed as large sets of a measure space
|
||||
of measure $1$.
|
||||
Clubs behave similarly to sets of measure $1$
|
||||
and stationary sets are analogous to
|
||||
sets of positive measure:
|
||||
\begin{itemize}
|
||||
\item Every club is stationary,
|
||||
\item the intersection of two clubs is a club,
|
||||
\item the intersection of a club and a stationary set is stationary,
|
||||
\item there exist disjoint stationary sets.
|
||||
\end{itemize}
|
||||
\end{remark}
|
||||
\begin{example}
|
||||
\begin{itemize}
|
||||
\item Every $D \subseteq \kappa$ which is club in $\kappa$
|
||||
|
|
|
@ -43,6 +43,7 @@ Recall that $F \subseteq \cP(\kappa)$ is a filter if
|
|||
$X,Y \in F \implies X \cap Y \in F$,
|
||||
$X \in F, X \subseteq Y \subseteq \kappa \implies Y \in F$
|
||||
and $\emptyset \not\in F, \kappa \in F$.
|
||||
\todo{Move this to the definition of filter?}
|
||||
}{}
|
||||
\begin{definition}
|
||||
A filter $F$ is an \vocab{ultrafilter}
|
||||
|
@ -103,7 +104,11 @@ one cofinality.
|
|||
|
||||
\begin{refproof}{thm:solovay}%
|
||||
\gist{%
|
||||
\footnote{``This is one of the arguments where it is certainly worth it to look at it again.''}
|
||||
%\footnote{``This is one of the arguments where it is certainly
|
||||
% worth it to look at it again''}
|
||||
% TODO: Look at this again and think about it.
|
||||
% TODO TODO TODO
|
||||
|
||||
We will only prove this for $\aleph_1$.
|
||||
Fix $S \subseteq \aleph_1$ stationary.
|
||||
|
||||
|
@ -192,22 +197,19 @@ one cofinality.
|
|||
|
||||
Write $\delta_i = \delta'$ and $T_i = T$.
|
||||
|
||||
By construction, all the $T_i$ are stationary.
|
||||
Since the $\delta_i$ are strictly increasing
|
||||
and since $\gamma_n^{\alpha} = \delta_i$ for all $\alpha \in T_i$,
|
||||
we have that the $T_i$ are disjoint.
|
||||
% \begin{claim}
|
||||
% \label{thm:solovay:p:c2}
|
||||
% Each $T_i$ is stationary
|
||||
% and if $i \neq j$, then $T_i \cap T_j = \emptyset$.
|
||||
% \end{claim}
|
||||
% \begin{subproof}
|
||||
% The first part is true by construction.
|
||||
% Let $j < i$.
|
||||
% Then if $\alpha \in T_i$, $\alpha' \in T_j$,
|
||||
% we get $\gamma_n^{\alpha'} = \delta_j < \delta_i = \gamma_n^{\alpha}$
|
||||
% hence $\alpha \neq \alpha'$.
|
||||
% \end{subproof}
|
||||
\begin{claim}
|
||||
\label{thm:solovay:p:c2}
|
||||
Each $T_i$ is stationary
|
||||
and if $i \neq j$, then $T_i \cap T_j = \emptyset$.
|
||||
\footnote{maybe this should not be a claim}
|
||||
\end{claim}
|
||||
\begin{subproof}
|
||||
The first part is true by construction.
|
||||
Let $j < i$.
|
||||
Then if $\alpha \in T_i$, $\alpha' \in T_j$,
|
||||
we get $\gamma_n^{\alpha'} = \delta_j < \delta_i = \gamma_n^{\alpha}$
|
||||
hence $\alpha \neq \alpha'$.
|
||||
\end{subproof}
|
||||
|
||||
Now let
|
||||
\[
|
||||
|
@ -230,6 +232,8 @@ one cofinality.
|
|||
\item $\exists n < \omega.~\forall \delta < \omega_1: \{\alpha \in S^\ast : \gamma^{\alpha}_n > \delta\}$
|
||||
stationary:
|
||||
\begin{itemize}
|
||||
% TODO THINK!
|
||||
% TODO TODO TODO
|
||||
\item Otherwise $\forall n < \omega.~\exists \delta.~\{\alpha \in S^\ast : \gamma^{\alpha}_n > \delta\} $ nonstationary.
|
||||
\item $\delta_n\coloneqq $ least such $\delta$,
|
||||
$C_n$ club s.t.~$C_n \cap \{\alpha \in S^\ast : \gamma^{\alpha}_n > \delta_n\} = \emptyset$.
|
||||
|
|
|
@ -1,6 +1,9 @@
|
|||
\lecture{17}{2023-12-14}{Silver's Theorem}
|
||||
|
||||
We now want to prove \yaref{thm:silver}.
|
||||
% More generally, if $\kappa$ is a singular cardinal of uncountable cofinality
|
||||
% such that $2^{\lambda} = \lambda^+$ for all $\lambda < \kappa$,
|
||||
% then $2^{\kappa} = \kappa^+$.
|
||||
|
||||
\gist{%
|
||||
\begin{remark}
|
||||
|
@ -9,7 +12,7 @@ We now want to prove \yaref{thm:silver}.
|
|||
\end{remark}
|
||||
}{}
|
||||
|
||||
We will only prove
|
||||
We will only proof
|
||||
\gist{%
|
||||
\yaref{thm:silver} in the special case that $\kappa = \aleph_{\omega_1}$
|
||||
(see \yaref{thm:silver1}).
|
||||
|
@ -150,7 +153,6 @@ We will only prove
|
|||
|
||||
Let $\beta < \omega_1$ be such that for all $Y \in A_2$
|
||||
and for all $\alpha \in T$, $h_Y(\alpha) = \beta$.
|
||||
% TODO WHY DOES THIS WORK?
|
||||
Then $\overline{f}_Y(\alpha) < \aleph_\beta$
|
||||
for all $Y \in A_2$ and $\alpha \in T$.
|
||||
|
||||
|
|
|
@ -27,6 +27,7 @@
|
|||
Since $2^{\lambda} < \kappa$,
|
||||
\AxPow works.
|
||||
The other axioms are trivial.
|
||||
\todo{Exercise}
|
||||
\end{proof}
|
||||
\begin{corollary}
|
||||
$\ZFC$ does not prove the existence of inaccessible
|
||||
|
|
|
@ -79,7 +79,6 @@ and $\forall x \in y.~\phi$ abbreviates $\forall x.~x \in y \to \phi$.
|
|||
A similar arguments yields \vocab{upwards absoluteness} for $\Sigma_1$-formulas
|
||||
and \vocab{downwards absoluteness} for $\Pi_1$-formulas:
|
||||
\begin{lemma}
|
||||
\label{lem:pi1downardsabsolute}
|
||||
Let $M$ be transitive.
|
||||
Let $\phi(x_0,\ldots,x_n) \in \cL_\in$ and $a_0,\ldots,a_n \in M$.
|
||||
Then
|
||||
|
|
|
@ -112,7 +112,7 @@ is well founded.
|
|||
|
||||
The formula $\forall x.~\forall y .~((\forall z \in x.~z \in y \land \forall z \in y.~z \in x) \to x = y)$
|
||||
is $\Pi_1$, hence it is true in $M[g]$
|
||||
by \yaref{lem:pi1downardsabsolute}.
|
||||
by %TODO REF downward absolutenes.
|
||||
\item \AxFund:
|
||||
Again,
|
||||
\[
|
||||
|
@ -137,7 +137,7 @@ is well founded.
|
|||
so $M[g] \models \text{``$\{x,y\}$ is the pair of $x$ and $y$''}$.
|
||||
Hence $M[g] \models \AxPair$.
|
||||
\item \AxUnion:
|
||||
Similar to \AxPair.
|
||||
Similar to \AxPair.\gist{\todo{Exercise}}{}
|
||||
\end{itemize}
|
||||
\end{proof}
|
||||
|
||||
|
@ -194,6 +194,7 @@ Still missing are
|
|||
\[
|
||||
p \Vdash^{\mathbb{P}}_M \phi(\tau_1,\ldots, \tau_k).
|
||||
\]
|
||||
|
||||
\end{enumerate}
|
||||
\end{theorem}
|
||||
\begin{proof}
|
||||
|
|
Loading…
Reference in a new issue