This commit is contained in:
parent
9b625846ec
commit
f20516fa8c
2 changed files with 237 additions and 5 deletions
|
@ -24,8 +24,8 @@ and $\forall x \in y.~\phi$ abbreviates $\forall x.~x \in y \to \phi$.
|
|||
If $\phi(x_0,\ldots,x_m) \in \Sigma_n$,
|
||||
then $(\forall x_0.~\ldots\forall x_m.~\phi(x_0,\ldots,x_m)) \in \Pi_{n+1}$.
|
||||
|
||||
If $\phi(x_0,\ldots,x_n) \in \Pi_n$,
|
||||
then $(\exists x_0.~\ldots\exists x_n.~\phi(x_0,\ldots,x_n) \in \Sigma_{n+1}$.
|
||||
If $\phi(x_0,\ldots,x_m) \in \Pi_n$,
|
||||
then $(\exists x_0.~\ldots\exists x_m.~\phi(x_0,\ldots,x_m) \in \Sigma_{n+1}$.
|
||||
|
||||
$\Delta_n \coloneqq \Sigma_n \cap \Pi_n$.
|
||||
\end{definition}
|
||||
|
@ -47,6 +47,7 @@ and $\forall x \in y.~\phi$ abbreviates $\forall x.~x \in y \to \phi$.
|
|||
\end{notation}
|
||||
|
||||
\begin{lemma}
|
||||
\label{lem:d0absolute}
|
||||
Let $M$ be transitive, $\phi \in \Delta_0$
|
||||
and $a_0,\ldots, a_n \in M$.
|
||||
Then $M \models\phi(a_0,\ldots,a_n)$
|
||||
|
@ -56,7 +57,6 @@ and $\forall x \in y.~\phi$ abbreviates $\forall x.~x \in y \to \phi$.
|
|||
Clearly $M \models a_i \in a_j \iff V \models a_i \in a_j$
|
||||
and $M \models a_i = a_j \iff V \models a_i = a_j$,
|
||||
i.e.~the lemma holds for atomic $\phi$.
|
||||
% TODO transitivity needed?
|
||||
|
||||
It is clear that if $M \models \phi_i \iff V \models \phi_i, i = 1,2$,
|
||||
then also $M \models \lnot \phi_i \iff V \models \lnot \phi_i$
|
||||
|
@ -65,8 +65,8 @@ and $\forall x \in y.~\phi$ abbreviates $\forall x.~x \in y \to \phi$.
|
|||
Assume that the lemma holds for $\phi$.
|
||||
Then it also holds for $\exists a_i \in a_j.~\phi$:
|
||||
We have that $a_i \in a_j$ is atomic and by the assumption that the lemma holds for $\phi$
|
||||
so since $M$ is transitive, a witness can be transferred from $V$ to $M$
|
||||
and vice versa.
|
||||
so since $M$ is transitive,
|
||||
a witness can be transferred from $V$ to $M$ and vice versa.
|
||||
The case of $\forall a_i \in a_j.~\phi$ can be treated similarly.
|
||||
\end{proof}
|
||||
A similar arguments yields \vocab{upwards absoluteness} for $\Sigma_1$-formulas
|
||||
|
@ -167,6 +167,7 @@ is a partially ordered set (\vocab{poset})
|
|||
if $\le $ is reflexive, symmetric nd transitive.
|
||||
|
||||
\begin{definition}
|
||||
\label{def:forcingwords}
|
||||
A non-empty poset $\bP = (P, \le )$ is called a \vocab{forcing notion}.
|
||||
The elements of $P$ are called \vocab{conditions}.
|
||||
If $q \le p$ we say that $q$ is \vocab{stronger} than $p$.%
|
||||
|
@ -196,6 +197,7 @@ if $\le $ is reflexive, symmetric nd transitive.
|
|||
\end{definition}
|
||||
|
||||
\begin{lemma}
|
||||
\label{lem:egenfilter}
|
||||
Let $\cP = (P, \le )$ be a poset,
|
||||
$\cD$ a countable family of dense subsets of $P$
|
||||
and $p \in P$.
|
||||
|
|
230
inputs/lecture_20.tex
Normal file
230
inputs/lecture_20.tex
Normal file
|
@ -0,0 +1,230 @@
|
|||
\lecture{20}{2024-01-15}{}
|
||||
|
||||
\begin{idea}
|
||||
We want to add a new object that satisfies certain condition.
|
||||
The elements of the forcing notion correspond to approximations
|
||||
of this object.
|
||||
|
||||
A filter picks some information which we want to be true.
|
||||
Being a filter ensures that this information does not contradict itself.
|
||||
\end{idea}
|
||||
|
||||
\begin{definition}
|
||||
Assume that $M$ is a transitive model of $\ZFC$,
|
||||
and $\bP \in M$ a poset.
|
||||
$G \subseteq \bP$ is said to be \vocab{$M$-generic for $\bP$}
|
||||
if whenever $D \subseteq \bP$ is dense
|
||||
and in $M$, then $G \cap D \neq \emptyset$.
|
||||
\end{definition}
|
||||
\begin{remark}
|
||||
That is the same as being $\{D \subseteq \bP \text{ dense } : D \in M\}$-generic
|
||||
with generic defined as in \yaref{def:forcingwords}.
|
||||
\end{remark}
|
||||
|
||||
% \begin{remark}
|
||||
% We can not prove that such a transitive model actually exists (we need inaccessible cardinals for that).
|
||||
% However there are transitive models of finite fragments of $\ZFC$.
|
||||
% % cf. Kuhnen, Chapter 7
|
||||
% So proofs using tansitive models can be made more general by
|
||||
% talking only about finite fragments, i.e.~a finite subset of the axioms of $\ZFC$ (since every proof can only
|
||||
% use finitely many axioms).
|
||||
% \end{remark}
|
||||
|
||||
\begin{definition}[Cohen Forcing]
|
||||
\yalabel{Cohen Forcing}{Cohen Forcing}{def:cohenf}
|
||||
Let $\bP$ be the set of finite partial function $p$ from $\omega$ to $2$,
|
||||
i.e.~$\cP = 2^{<\omega}$.
|
||||
|
||||
The order on $\bP$ is described by $q \le p \colon\iff q \supseteq p$.
|
||||
$\bP$ is called the \vocab{Cohen forcing}.
|
||||
\end{definition}
|
||||
\begin{fact}
|
||||
Assume $X \subseteq 2^\omega$ is countable,
|
||||
Then there is $x \in 2^\omega \setminus X$.
|
||||
\end{fact}
|
||||
Of course we already know that, but let's use it
|
||||
to test our machinery:
|
||||
\begin{proof}
|
||||
Assume that $X = \{x_n \colon n \in \omega\}$
|
||||
is an enumeration of $X$.
|
||||
Let $D_n = \{ p \in \bP : \exists i \in \dom(\bP).~x_n(i) \neq p(i)\}$.
|
||||
This makes sure that we get a ``new'' element
|
||||
not belonging to $X$.
|
||||
|
||||
\begin{claim}
|
||||
$D_n$ is dense in $\bP$.
|
||||
\end{claim}
|
||||
\begin{subproof}
|
||||
Assume $q \in \bP$.
|
||||
Let $i = 1 + \max(\dom(q))$.
|
||||
Note that $i \not\in \dom(q)$.
|
||||
Let $p = q \cup \{(i, 1-x_n(i))\}$.
|
||||
Then $p \in D_n$.
|
||||
\end{subproof}
|
||||
Let $E_i = \{p \in \bP : i \in \dom(\bP)\}$.
|
||||
This makes sure that our ``new'' element
|
||||
is defined everywhere.
|
||||
\begin{claim}
|
||||
$\forall i < \omega.~E_i \subseteq \bP \text{ is dense}$.
|
||||
\end{claim}
|
||||
\begin{subproof}
|
||||
Assume $q \in \bP$.
|
||||
If $ i \in \dom(q)$ pick $p = q \in E_i$.
|
||||
If $i \not\in \dom(q)$,
|
||||
let $p = q \cup \{(i,0)\} \in E_i$.
|
||||
\end{subproof}
|
||||
Let $\cD = \{D_n : n < \omega\} \cup \{E_i : i < \omega\}$.
|
||||
This is a countable subset of dense sets.
|
||||
By \yaref{lem:egenfilter}
|
||||
there is a $\cD$-generic filter $G$.
|
||||
Let $y = \bigcup G$.
|
||||
Note that $y$ is a function, since any two elements of $G$ are compatible.
|
||||
\end{proof}
|
||||
Note that the ``new'' element did already exists, so we used forcing language
|
||||
to find it but didn't actually do anything.
|
||||
|
||||
\begin{lemma}
|
||||
Let $M$ be a transitive model of $\ZFC$
|
||||
and let $\bP = (P, \le ) \in M$.
|
||||
|
||||
Let $D \subseteq \bP$, $D \in M$, $p \in \bP$.
|
||||
Then
|
||||
\begin{enumerate}[(1)]
|
||||
\item $\bP$ is a partial order iff $M \models \text{``$\bP$ is a partial order''}$.
|
||||
\item $D$ is dense in $\bP$ iff $M \models \text{``$D$ is dense in $\bP$''}$.
|
||||
\item $D$ is dense below $p$ iff $M \models \text{``$D$ is dense below $p$''}$
|
||||
(this only makes sense if $p \in M$).
|
||||
\end{enumerate}
|
||||
\end{lemma}
|
||||
\begin{proof}
|
||||
All the definitions are $\Delta_0$, so we can apply
|
||||
\yaref{lem:d0absolute}.
|
||||
\end{proof}
|
||||
|
||||
\begin{definition}
|
||||
Assume that $M$ is a transitive model of $\ZFC$
|
||||
and $\bP \in M$ is a poset.
|
||||
$G \subseteq \bP$ is called a
|
||||
\vocab{$\bP$-generic filter over $M$}
|
||||
or \vocab{$M$-generic filter for $\bP$}
|
||||
if
|
||||
\[
|
||||
\forall D \in M.~((D \subseteq \bP \text{ is dense}) \implies G \cap D \neq \emptyset).
|
||||
\]
|
||||
\end{definition}
|
||||
\begin{corollary}
|
||||
If $M$ is a countable transitive model of $\ZFC$,
|
||||
$\bP \in M$ is a poset
|
||||
and $p \in \bP$,
|
||||
then there is an $M$-generic filter $G \subseteq \bP$
|
||||
with $p \in G$.
|
||||
\end{corollary}
|
||||
\begin{remark}
|
||||
The filter usually exists outside of $M$.
|
||||
$M$ itself does not think that $M$ is countable,
|
||||
since $M \models \ZFC$.
|
||||
But from the outside, we see that $M$ is countable,
|
||||
so we can find a filter.
|
||||
\end{remark}
|
||||
|
||||
\begin{definition}
|
||||
Assume that $\bP$ is a poset.
|
||||
$\bP$ is said to be \vocab{atomless}
|
||||
if for all $p \in \bP$ there are $q,r \in \bP$
|
||||
such that
|
||||
\begin{enumerate}[(1)]
|
||||
\item $q \le p$, $r \le p$,
|
||||
\item $q \bot r$.
|
||||
\end{enumerate}
|
||||
\end{definition}
|
||||
\begin{example}
|
||||
The \yaref{def:cohenf} is atomless.
|
||||
\end{example}
|
||||
Usually we are only interested in atomless partial orders.
|
||||
\begin{lemma}
|
||||
Assume that $M$ is a transitive model of $\ZFC$,
|
||||
$\bP \in M$ an atomless poset
|
||||
and let $G \subseteq \bP$ be $M$-generic for $\bP$.
|
||||
Then $G \not\in M$.
|
||||
\end{lemma}
|
||||
\begin{proof}
|
||||
Towards a contradiction assume $G \in M$.
|
||||
Define $D\coloneqq \bP \setminus G$.
|
||||
We'll show that $D \subseteq \bP$ is dense,
|
||||
which is a contradiction, since $G$ was assumed to be $M$-generic.
|
||||
Let $q \in \bP$ and
|
||||
let $r,s$ be two extensions of $q$
|
||||
such that $r \bot s$.
|
||||
These exist because $\bP$ is atomless.
|
||||
Since $G$ is a filter,
|
||||
it can contain at most one of $\{r,s\}$,
|
||||
wlog.~$s \not\in G$.
|
||||
In particular, $s \in D$ and $s \le q$.
|
||||
Hence $D$ is dense in $\bP$.
|
||||
\end{proof}
|
||||
|
||||
\begin{lemma}
|
||||
Assume that $M$ is a transitive model of $\ZFC$,
|
||||
$\bP \in M$ a poset, $G \subseteq \bP$ an $M$-generic filter
|
||||
and $p \in G$.
|
||||
|
||||
If $D$ is dense below $p$,
|
||||
then $G \cap D \neq \emptyset$.
|
||||
\end{lemma}
|
||||
\begin{proof}
|
||||
Let $E = D \cup \{ q \in \bP : q \bot p\}$.
|
||||
$E \subseteq \bP$ is dense:
|
||||
Let $r \in \bP$.
|
||||
\begin{itemize}
|
||||
\item If $r || p$ let $s \le r,p$.
|
||||
Since $D$ is dense below $p$,
|
||||
there exists $\overline{s} \in D$ such that $\overline{s} \le s$.
|
||||
Since $D \subseteq E$, $\overline{s} \in E$.
|
||||
\item If $r \bot p$, then it is obvious that $r \in E$.
|
||||
\end{itemize}
|
||||
|
||||
Since $E \in M$, $G \cap E \neq \emptyset$.
|
||||
\begin{IEEEeqnarray*}{rCl}
|
||||
G \cap (D \cup \{q \in \bP : q \bot p\}) &\neq & \emptyset\\
|
||||
\implies (G\cap D) \cup \underbrace{(G \cap \{q \in \bP : q \bot p\})}_{\emptyset} & \neq & \emptyset\\
|
||||
\end{IEEEeqnarray*}
|
||||
\end{proof}
|
||||
|
||||
\begin{definition}
|
||||
Assume that $\bP$ is a poset.
|
||||
\begin{enumerate}[(1)]
|
||||
\item $A \subseteq \bP$ is said to be an \vocab{antichain}
|
||||
iff for all $p \neq q$ in $A$,
|
||||
$p \bot q$.
|
||||
\item An antichain $A \subseteq \bP$ is a
|
||||
\vocab{maximal antichain}
|
||||
iff $\forall r \in \bP$, there exists $a \in \bP$
|
||||
such that $p || r$.
|
||||
\item $X \subseteq \bP$ is said to be \vocab{open}
|
||||
if $\forall p \in X.~\forall q \le p.~ q \in X$.
|
||||
\end{enumerate}
|
||||
\end{definition}
|
||||
\begin{remark}
|
||||
Note that if $A$ is a maximal antichain
|
||||
in $\bP$, then it is maximal in $(\{A \subseteq \bP : A \text{ is an antichain}\}, \subseteq )$.
|
||||
Using $\AxC$, every antichain can be extend to a maximal antichain.
|
||||
|
||||
The statement ``$A$ is an antichain'' is $\Delta_0$.
|
||||
|
||||
Note that ``every antichain of $\bP$ is countable'' is not necessarily
|
||||
absolute between transitive models of $\ZFC$.
|
||||
|
||||
\end{remark}
|
||||
\begin{lemma}
|
||||
Assume that $M$ is a transitive model of $\ZFC$,
|
||||
$\bP \in M$ a poset and $G \subseteq \bP$ a filter.
|
||||
Then the following are equivalent:
|
||||
\begin{enumerate}[(1)]
|
||||
\item $G$ is $\bP$-generic over $M$.
|
||||
\item $G \cap A \neq \emptyset$ for every
|
||||
maximal antichain $A \in M$.
|
||||
\item $G \cap D \neq \emptyset$ for every dense
|
||||
open $D \in M$ with $D \subseteq \bP$
|
||||
\end{enumerate}
|
||||
\end{lemma}
|
||||
We'll prove this next time.
|
Loading…
Reference in a new issue