some small changes, gist
Some checks failed
Build latex and deploy / checkout (push) Failing after 16m11s
Some checks failed
Build latex and deploy / checkout (push) Failing after 16m11s
This commit is contained in:
parent
b1b2a5974d
commit
ebdf929dd7
13 changed files with 336 additions and 119 deletions
|
@ -2,7 +2,7 @@
|
|||
|
||||
% Model-theoretic concepts and ultraproducts
|
||||
|
||||
\section{$\ZFC$}
|
||||
\section{\texorpdfstring{$\ZFC$}{ZFC}}
|
||||
|
||||
% 1900, Russel's paradox
|
||||
\todo{Russel's Paradox}
|
||||
|
|
|
@ -104,12 +104,12 @@
|
|||
|
||||
We write $f\colon d \to b$.
|
||||
The set of all function from $d$ to $b$
|
||||
is denoted by ${}^d b$ or $b^d$.
|
||||
is denoted by $\leftindex^d b$ or $b^d$.
|
||||
\end{definition}
|
||||
|
||||
\begin{fact}
|
||||
Given sets $d, b$ then
|
||||
${}^d b$ exists.
|
||||
$\leftindex^d b$ exists.
|
||||
\end{fact}
|
||||
\begin{proof}
|
||||
Apply again \AxAus over $\cP(d \times b)$.
|
||||
|
|
|
@ -103,7 +103,7 @@ Furthermore $F\,''a \coloneqq \{y : \exists x \in a .~(x,y) \in F\}$.
|
|||
and $\phi$ does not have quantifiers
|
||||
ranging over classes.%
|
||||
\footnote{If one removes the restriction regarding
|
||||
quantifiers another theory, called
|
||||
quantifiers, another theory, called
|
||||
\vocab{Morse-Kelly} set theory, is obtained.}
|
||||
\end{axiom}
|
||||
|
||||
|
@ -113,7 +113,8 @@ Furthermore $F\,''a \coloneqq \{y : \exists x \in a .~(x,y) \in F\}$.
|
|||
|
||||
\todo{the following was actually done in lecture 9}
|
||||
|
||||
$\BGC$ (in German often NBG) is defined to be $\BG$
|
||||
$\BGC$ (in German often NBG\footnote{\vocab{Neumann-Bernays-Gödel}})
|
||||
is defined to be $\BG$
|
||||
together with the additional axiom:
|
||||
\begin{axiom}[Choice]
|
||||
\[
|
||||
|
@ -212,7 +213,7 @@ $\ZFC \vdash \phi$ then $\BGC \vdash \phi$.
|
|||
&&~ ~\overline{g}(0) = x \land \forall m \in \omega.~(m+1 \in \dom(\overline{g}) \implies \overline{g}(m+1) = f(\overline{g}(m)))\}.
|
||||
\end{IEEEeqnarray*}
|
||||
$G$ exists as it can be obtained by \AxAus
|
||||
from ${}^{< \omega}M$.
|
||||
from $\leftindex^{< \omega}M$.
|
||||
By induction,
|
||||
for every $n \in \omega$,
|
||||
there is a $\overline{g} \in G$
|
||||
|
|
|
@ -48,6 +48,7 @@ An alternative way of formulating this is
|
|||
\end{definition}
|
||||
|
||||
\begin{theorem}
|
||||
\yalabel{Recursion Theorem}{recursion}{thm:recursion}
|
||||
Let $R$ be a well-founded
|
||||
and set-like relation on $A$ (i.e.~$R \subseteq A \times A$).
|
||||
|
||||
|
@ -59,11 +60,12 @@ An alternative way of formulating this is
|
|||
Then there is a unique function $f$ on $A$
|
||||
such that for all $x \in A$,
|
||||
\[
|
||||
(F\defon{ \{y \in A : (y,x) \in R\}}, x, F(x)) \in D.
|
||||
(F\defon{ \{y \in A : (y,x) \in R\}}, x, F(x)) \in D\gist{,}{.}
|
||||
\]
|
||||
I.e.~$F(x)$ is computed from $F\defon{\{y \in A: (y,x) \in R\}}$.
|
||||
\gist{i.e.~$F(x)$ is computed from $F\defon{\{y \in A: (y,x) \in R\}}$.}{}
|
||||
\end{theorem}
|
||||
\begin{proof}
|
||||
\gist{%
|
||||
Uniqueness:
|
||||
|
||||
Let $F, F'$ be two such functions.
|
||||
|
@ -106,7 +108,7 @@ An alternative way of formulating this is
|
|||
|
||||
If $x \in \dom(F)$ and $y \in A$ with $(y,x) \in R$,
|
||||
then $y \in \dom(F)$
|
||||
and $(F\defon{\{y : (y,x) \in R\}}, x,F(x)) \in D$.
|
||||
and \[(F\defon{\{y : (y,x) \in R\}}, x,F(x)) \in D.\]
|
||||
|
||||
We need to show that $\dom(F) = A$.
|
||||
This holds by induction:
|
||||
|
@ -121,8 +123,26 @@ An alternative way of formulating this is
|
|||
But then $f \cup (x,z)$,
|
||||
where $z$ is unique such that $(f\defon{\{y : (y,x) \in R\}}, x, z) \in D$,
|
||||
is good $\lightning$.
|
||||
}{
|
||||
\begin{itemize}
|
||||
\item Uniqueness:
|
||||
|
||||
Consider $\overline{A} \coloneqq \{x \in A : F(x) \neq F'(x)\}$
|
||||
for two such functions. If $\overline{A} \neq \emptyset$,
|
||||
there is a minimal element $\lightning$.
|
||||
\item Existence:
|
||||
|
||||
\begin{itemize}
|
||||
\item call set-function $f$ \emph{good} iff:
|
||||
\begin{itemize}
|
||||
\item $\dom(f) \subseteq A$,
|
||||
\item $x \in \dom(f), y <_R x \implies y \in \dom(f)$,
|
||||
\item $\forall x \in \dom(f).~(f\defon{\{y \in A : y <_R x\}}, x, f(x)) \in D$.
|
||||
\end{itemize}
|
||||
\item $F \coloneqq \bigcup \{f : f \text{ good}\}$ (comprehension)
|
||||
\item $\dom F = A$ (induction).
|
||||
\end{itemize}
|
||||
|
||||
\end{itemize}
|
||||
}
|
||||
\end{proof}
|
||||
|
||||
|
||||
|
||||
|
||||
|
|
|
@ -1,6 +1,5 @@
|
|||
\lecture{10}{}{} % Mirko
|
||||
|
||||
Applications of induction and recursion:
|
||||
\subsubsection{Applications of induction and recursion}
|
||||
\begin{fact}
|
||||
For every set $x$ there is a transitive set $t$
|
||||
such that $x \in t$.
|
||||
|
@ -14,7 +13,7 @@ Applications of induction and recursion:
|
|||
Once we have such a function,
|
||||
$\{x\} \cup \bigcup \ran(F)$
|
||||
is a set as desired.
|
||||
To get this $F$ using the recursion theorem,
|
||||
To get this $F$ using the \yaref{thm:recursion},
|
||||
pick $D$ such that
|
||||
\[
|
||||
(\emptyset, 0, \{x\}) \in D
|
||||
|
@ -23,7 +22,7 @@ Applications of induction and recursion:
|
|||
\[
|
||||
(f, n+1, \bigcup\bigcup \ran(f)) \in D.
|
||||
\]
|
||||
The recursion theorem then gives a function
|
||||
The \yaref{thm:recursion} then gives a function
|
||||
such that
|
||||
\begin{IEEEeqnarray*}{rCl}
|
||||
F(0) &=& \{x\},\\
|
||||
|
@ -51,14 +50,22 @@ Applications of induction and recursion:
|
|||
}{}
|
||||
\begin{lemma}
|
||||
There is a function $F\colon \OR \to V$
|
||||
such that $F(\alpha) = \bigcup \{\cP(F(\beta)): \beta < \alpha\}$.
|
||||
such that
|
||||
\gist{$F(\alpha) = \bigcup \{\cP(F(\beta)): \beta < \alpha\}$.}{%
|
||||
$F(\alpha) = \bigcup_{\beta < \alpha} \cP(F(\beta))$.
|
||||
}
|
||||
\gist{}{%
|
||||
$F(\alpha)$ is denoted by $V_\alpha$.
|
||||
These are called the \vocab{rank initial segments} of $V$.
|
||||
}
|
||||
\end{lemma}
|
||||
\begin{proof}
|
||||
Use the recursion theorem with $R = \in $
|
||||
Use the \yaref{thm:recursion} with $R = \in $
|
||||
and $(w,x,y) \in D$ iff
|
||||
\[
|
||||
y = \bigcup \{\cP(\overline{y}) : \overline{y} \in \ran(w)\}.
|
||||
\]
|
||||
\gist{%
|
||||
This function has the following properties:
|
||||
\begin{IEEEeqnarray*}{rCl}
|
||||
F(0) &=& \bigcup \emptyset = \emptyset,\\
|
||||
|
@ -66,6 +73,7 @@ Applications of induction and recursion:
|
|||
F(2) &=& \bigcup \{\cP(\emptyset), \cP(\{\emptyset\})\} = \bigcup \{\{\emptyset\}, \{\emptyset, \{\emptyset\} \} \} = \{\emptyset, \{\emptyset\} \},\\
|
||||
\ldots
|
||||
\end{IEEEeqnarray*}
|
||||
}{}
|
||||
|
||||
It is easy to prove by induction:
|
||||
\begin{enumerate}[(a)]
|
||||
|
@ -76,16 +84,23 @@ Applications of induction and recursion:
|
|||
for $\lambda \in \OR$ a limit.
|
||||
\end{enumerate}
|
||||
\end{proof}
|
||||
\gist{%
|
||||
\begin{notation}
|
||||
Usually, one writes $V_\alpha$ for $F(\alpha)$.
|
||||
They are called the \vocab{rank initial segments} of $V$.
|
||||
\end{notation}
|
||||
}{}
|
||||
\begin{lemma}
|
||||
\gist{%
|
||||
If $x$ is any set, then there is some $\alpha \in \OR$
|
||||
such that $x \in V_\alpha$,
|
||||
i.e.~$V = \bigcup \{V_{\alpha} : \alpha \in \OR\}$.
|
||||
}{
|
||||
$V = \bigcup_{\alpha \in \OR} V_\alpha$.
|
||||
}
|
||||
\end{lemma}
|
||||
\begin{proof}
|
||||
\gist{%
|
||||
We use induction on the well-founded $\in$-relation.
|
||||
Let $A = \bigcup \{V_\alpha : \alpha \in \OR\}$.
|
||||
We need to show that $A = V$.
|
||||
|
@ -103,6 +118,7 @@ Usually, one writes $V_\alpha$ for $F(\alpha)$.
|
|||
|
||||
In other words $x \subseteq V_\alpha$,
|
||||
hence $x \in V_{\alpha+1}$.
|
||||
}{Induction on $\in$.}
|
||||
\end{proof}
|
||||
|
||||
\begin{lemma}[\vocab{Transitive collapse}/\vocab{Mostowski collapse}]
|
||||
|
@ -118,7 +134,9 @@ Usually, one writes $V_\alpha$ for $F(\alpha)$.
|
|||
with $x \in y \iff (F(x),F(y)) \in R$ for $x,y \in B$.
|
||||
\end{lemma}
|
||||
\begin{proof}
|
||||
``$\impliedby$'' Suppose that $R$ is ill-founded
|
||||
``$\impliedby$''
|
||||
\gist{%
|
||||
Suppose that $R$ is ill-founded
|
||||
(i.e.~not well-founded).
|
||||
Then there is some $(y_n : n < \omega)$ such that $y_n \in A$
|
||||
and $(y_{n+1}, y_n) \in R$ for all $n < \omega$.
|
||||
|
@ -127,8 +145,13 @@ Usually, one writes $V_\alpha$ for $F(\alpha)$.
|
|||
F^{-1}(Y_{n+1}) \in F^{-1}(Y_n)
|
||||
\]
|
||||
for all $n < \omega$ $\lightning$
|
||||
}{%
|
||||
Trivial, since $\in$ is well-founded.
|
||||
}
|
||||
|
||||
``$\implies$ '' Suppose that $R$ is well-founded.
|
||||
``$\implies$ ''
|
||||
\gist{%
|
||||
Suppose that $R$ is well-founded.
|
||||
We want a transitive class $B$ and a function $F\colon B \leftrightarrow A$
|
||||
such that
|
||||
\[
|
||||
|
@ -138,9 +161,16 @@ Usually, one writes $V_\alpha$ for $F(\alpha)$.
|
|||
with $(x,y) \in R$ iff $G(x) \in G(y)$ for all $x,y \in A$.
|
||||
|
||||
In other words, $G(y) = \{G(x) : (x,y) \in R\}$.
|
||||
Such a function $G$ and class $B$ exist by the recursion theorem.
|
||||
Such a function $G$ and class $B$ exist by the \yaref{thm:recursion}.
|
||||
}{Use recursion to define $F(y) \coloneqq \{F(x) : (x,y) \in R\}$.}
|
||||
\end{proof}
|
||||
|
||||
As a consequence of the \yaref{lem:mostowski},
|
||||
we get that if $<$ is a well-order on a set $a$
|
||||
then there is some transitive set $b$
|
||||
with $(b, \in\defon{b}) \cong (a, <)$.
|
||||
|
||||
|
||||
\begin{lemma}[\vocab{Rank function}]
|
||||
Let $R$ be a well-founded and set-like binary relation
|
||||
on a class $A$.
|
||||
|
@ -149,7 +179,7 @@ Usually, one writes $V_\alpha$ for $F(\alpha)$.
|
|||
\[(x,y) \in R \implies F(x) < F(y).\]
|
||||
\end{lemma}
|
||||
\begin{proof}
|
||||
By the recursion theorem,
|
||||
By the \yaref{thm:recursion},
|
||||
there is $F$ such that
|
||||
\[
|
||||
F(y) = \sup \{F(x) + 1 : (x,y) \in R\}.
|
||||
|
|
|
@ -2,12 +2,6 @@
|
|||
|
||||
\subsection{Cardinals}
|
||||
|
||||
Consequence of the Mostowski collapse:
|
||||
|
||||
If $<$ is a well-order on a set $a$
|
||||
then there is some transitive $b$
|
||||
with $(b, \in\defon{b}) \cong (a, <)$.
|
||||
|
||||
\begin{definition}
|
||||
Let $a$ be any set.
|
||||
The \vocab{cardinality} of $a$
|
||||
|
@ -16,8 +10,10 @@ with $(b, \in\defon{b}) \cong (a, <)$.
|
|||
such that there is some bijection $f\colon \alpha \to a$.
|
||||
|
||||
An ordinal $\alpha$ is called a \vocab{cardinal},
|
||||
iff there is some set $a$ with $|a| = \alpha$
|
||||
(equivalently, $|\alpha| = \alpha$).
|
||||
iff \gist{%
|
||||
there is some set $a$ with $|a| = \alpha$
|
||||
(equivalently, $|\alpha| = \alpha$).%
|
||||
}{$|\alpha| = \alpha$.}
|
||||
\end{definition}
|
||||
|
||||
We often write $\kappa, \lambda, \ldots$ for cardinals.
|
||||
|
@ -27,23 +23,28 @@ We often write $\kappa, \lambda, \ldots$ for cardinals.
|
|||
there is come cardinal $\lambda > \kappa$.
|
||||
\end{lemma}
|
||||
\begin{proof}
|
||||
\gist{%
|
||||
Consider the powerset of $\kappa$.
|
||||
We know that there is no surjection $\kappa \twoheadrightarrow \cP(\kappa)$.
|
||||
Hence $\kappa < |2^{\kappa}|$.
|
||||
}{$\kappa < |2^{\kappa}|$.}
|
||||
\end{proof}
|
||||
|
||||
\begin{definition}
|
||||
For each cardinal $\kappa$,
|
||||
$\kappa^+$ denotes the least cardinal $\lambda > \kappa$.
|
||||
\end{definition}
|
||||
\gist{%
|
||||
\begin{warning}
|
||||
This has nothing to do with the ordinal successor of $\kappa$.
|
||||
\end{warning}
|
||||
}{}
|
||||
\begin{lemma}
|
||||
Let $X$ be any set of cardinals.
|
||||
Then $\sup X$ is a cardinal.
|
||||
\end{lemma}
|
||||
\begin{proof}
|
||||
\gist{%
|
||||
If there is some $\kappa \in X$ with $\lambda \le \kappa$
|
||||
for all $\lambda \in X$,
|
||||
then $\kappa = \sup(X)$ is a cardinal.
|
||||
|
@ -62,8 +63,19 @@ We often write $\kappa, \lambda, \ldots$ for cardinals.
|
|||
However, there exists $\mu \twoheadrightarrow \sup(X)$,
|
||||
hence also $\mu \twoheadrightarrow \lambda$
|
||||
(which is in contradiction to $\lambda$ being a cardinal).
|
||||
}{%
|
||||
\begin{itemize}
|
||||
\item If $\sup(X) \in X$ this is trivial.
|
||||
\item Let $\sup(X) \not\in X$, $\mu \coloneqq |\sup(X)|$.
|
||||
\begin{itemize}
|
||||
\item Suppose that $\sup(X)$ is not a cardinal.
|
||||
Then $\mu \in \sup(X)$, since $\sup(X) \in \OR$.
|
||||
\item $\exists \lambda \in X.~\lambda > \mu$ $\lightning$.
|
||||
\end{itemize}
|
||||
\end{itemize}
|
||||
}
|
||||
\end{proof}
|
||||
We may now use the recursion theorem
|
||||
We may now use the \yaref{lem:recursion}
|
||||
to define a sequence $\langle \aleph_\alpha : \alpha \in \OR \rangle$
|
||||
with the following properties:
|
||||
\begin{IEEEeqnarray*}{rCl}
|
||||
|
@ -72,7 +84,7 @@ with the following properties:
|
|||
\aleph_{\lambda} &=& \sup \{\aleph_\alpha : \alpha < \lambda\}.
|
||||
\end{IEEEeqnarray*}
|
||||
Each $\aleph_\alpha$ is a cardinal.
|
||||
Also, a trivial induction show that $\alpha \le \aleph_\alpha$.
|
||||
Also, a trivial induction shows that $\alpha \le \aleph_\alpha$.
|
||||
In particular $|\alpha| \le \aleph_{\alpha}$.
|
||||
Therefore the $\aleph_\alpha$ are all the infinite cardinals:
|
||||
If $a$ is any infinite set, then $|a| \le \aleph_{|a|}$,
|
||||
|
@ -84,7 +96,7 @@ so $|a| = \aleph_\beta$ for some $\beta \le |\alpha|$.
|
|||
\end{notation}
|
||||
|
||||
\begin{notation}
|
||||
Let ${}^a b \coloneqq \{f : f \text{ is a function}, \dom(f) = \alpha, \ran(f) \subseteq b\}$.
|
||||
Let $\leftindex^a b \coloneqq \{f : f \text{ is a function}, \dom(f) = \alpha, \ran(f) \subseteq b\}$.
|
||||
\end{notation}
|
||||
|
||||
\begin{definition}[Cardinal arithmetic]
|
||||
|
@ -93,12 +105,14 @@ so $|a| = \aleph_\beta$ for some $\beta \le |\alpha|$.
|
|||
\begin{IEEEeqnarray*}{rCl}
|
||||
\kappa + \lambda &\coloneqq & |\{0\} \times \kappa \cup \{1\} \times \lambda|,\\
|
||||
\kappa \cdot \lambda &\coloneqq & |\kappa \times \lambda|,\\
|
||||
\kappa^{\lambda} &\coloneqq & |{}^{\lambda}\kappa|.
|
||||
\kappa^{\lambda} &\coloneqq & |\leftindex^{\lambda}\kappa|.
|
||||
\end{IEEEeqnarray*}
|
||||
\end{definition}
|
||||
\gist{%
|
||||
\begin{warning}
|
||||
This is very different from ordinal arithmetic!
|
||||
\end{warning}
|
||||
}{}
|
||||
|
||||
\begin{theorem}[Hessenberg]
|
||||
\label{thm:hessenberg}
|
||||
|
@ -106,7 +120,6 @@ so $|a| = \aleph_\beta$ for some $\beta \le |\alpha|$.
|
|||
\[
|
||||
\aleph_\alpha \cdot \aleph_\alpha = \aleph_\alpha.
|
||||
\]
|
||||
|
||||
\end{theorem}
|
||||
\begin{corollary}
|
||||
For all $\alpha, \beta$ it is
|
||||
|
@ -116,13 +129,16 @@ so $|a| = \aleph_\beta$ for some $\beta \le |\alpha|$.
|
|||
\end{corollary}
|
||||
\begin{proof}
|
||||
Wlog.~$\alpha \le \beta$.
|
||||
\gist{%
|
||||
Trivially $\aleph_\alpha \le \aleph_\beta$.
|
||||
It is also clear that
|
||||
\[
|
||||
\aleph_{\beta} \le \aleph_\alpha + \aleph_{\beta} \le \aleph_\alpha \cdot \aleph_\beta \le \aleph_\beta \cdot \aleph_\beta = \aleph_\beta.
|
||||
\]
|
||||
}{Then $\aleph_{\beta} \le \aleph_\alpha + \aleph_{\beta} \le \aleph_\alpha \cdot \aleph_\beta \le \aleph_\beta \cdot \aleph_\beta = \aleph_\beta$.}
|
||||
\end{proof}
|
||||
\begin{refproof}{thm:hessenberg}
|
||||
\gist{%
|
||||
Define a well-order $<^\ast$ on $\OR \times \OR$ by setting
|
||||
\[
|
||||
(\alpha,\beta) <^\ast (\gamma,\delta)
|
||||
|
@ -143,7 +159,7 @@ so $|a| = \aleph_\beta$ for some $\beta \le |\alpha|$.
|
|||
$\Gamma$ is called the \vocab{Gödel pairing function}.
|
||||
\begin{claim}
|
||||
For all $\alpha$ it is
|
||||
$\ran(\Gamma\defon{\aleph_\alpha \times \aleph_\alpha})) = \aleph_\alpha$,
|
||||
$\ran(\Gamma\defon{\aleph_\alpha \times \aleph_\alpha}) = \aleph_\alpha$,
|
||||
i.e.
|
||||
\[
|
||||
\aleph_\alpha = \{\xi: \exists \eta, \eta' < \aleph_\alpha.~\xi = \Gamma((\eta,\eta'))\}.
|
||||
|
@ -173,7 +189,7 @@ so $|a| = \aleph_\beta$ for some $\beta \le |\alpha|$.
|
|||
If $(\gamma,\delta) <^\ast (\eta, \eta')$,
|
||||
then $\max \{\gamma,\delta\} \le \max \{\eta, \eta'\}$.
|
||||
Say $\eta \le \eta' < \aleph_\alpha$
|
||||
and let $\aleph_\alpha = |\eta'|$.
|
||||
and let $\aleph_\beta = |\eta'|$.
|
||||
There is a surjection
|
||||
\[f\colon \underbrace{(\eta +1)}_{ \le \aleph_\beta} \times \underbrace{(\eta' + 1)}_{\sim \aleph_\beta} \twoheadrightarrow \aleph_\alpha.\]
|
||||
|
||||
|
@ -181,15 +197,38 @@ so $|a| = \aleph_\beta$ for some $\beta \le |\alpha|$.
|
|||
The inductive hypothesis then produces a surjection
|
||||
$f^\ast\colon \aleph_\beta \to \aleph_\alpha \lightning$.
|
||||
\end{subproof}
|
||||
}{
|
||||
\begin{itemize}
|
||||
\item Define wellorder $<^\ast \subseteq \OR \times \OR$,
|
||||
$(\alpha,\beta) <^\ast (\gamma,\delta)$ iff
|
||||
\begin{itemize}
|
||||
\item $\max(\alpha,\beta) < \max(\gamma,\delta)$ or
|
||||
\item $\max(\alpha,\beta) = \max(\gamma,\delta)$ and $\alpha < \gamma$ or
|
||||
\item $\max(\alpha,\beta) = \max(\gamma,\delta)$ and $\alpha = \gamma$ and $\beta < \delta$.
|
||||
\end{itemize}
|
||||
\item Gödel pairing function $\Gamma : (\OR \times \OR, <^\ast) \xrightarrow{\cong} (\OR, <)$.
|
||||
\item $\forall \alpha.~\ran(\Gamma\defon{\aleph_\alpha \times \aleph_\alpha}) = \aleph_\alpha$.
|
||||
\begin{itemize}
|
||||
\item Induction on $\alpha$.
|
||||
\item Clearly $\aleph_\alpha \subseteq \ran(\Gamma\defon{\aleph_\alpha \times \aleph_\alpha})$
|
||||
($\aleph_\alpha$ is a cardinal).
|
||||
\item Suppose $\aleph_\alpha \subsetneq \ran(\Gamma\defon{\aleph_\alpha \times \aleph_\alpha})$,
|
||||
We get a surjection $\aleph_\beta \xrightarrow{\text{induction}} \aleph_\beta \times \aleph_\beta \to \aleph_\alpha$
|
||||
for some $\beta < \alpha$.
|
||||
\end{itemize}
|
||||
\end{itemize}
|
||||
}
|
||||
\end{refproof}
|
||||
\gist{%
|
||||
However, exponentiation of cardinals is far from trivial:
|
||||
\begin{observe}
|
||||
$2^{\kappa} = |\cP(\kappa)|$,
|
||||
since ${}^{\kappa} \{0,1\} \leftrightarrow\cP(\kappa)$.
|
||||
since $\leftindex^{\kappa} \{0,1\} \leftrightarrow\cP(\kappa)$.
|
||||
|
||||
Hence by Cantor $2^{\kappa}\ge \kappa^+$.
|
||||
\end{observe}
|
||||
This is basically all we can say.
|
||||
}{}
|
||||
|
||||
The \vocab{continuum hypothesis} states that $2^{\aleph_0} = \aleph_1$.
|
||||
|
||||
|
|
|
@ -26,17 +26,20 @@ and
|
|||
\beta^{\lambda} &\coloneqq & \sup_{\alpha < \lambda} \beta^{\alpha} &~ ~\text{for limit ordinals $\lambda$}.
|
||||
\end{IEEEeqnarray*}
|
||||
|
||||
\gist{%
|
||||
\begin{example}
|
||||
\leavevmode
|
||||
\begin{itemize}
|
||||
\item $2+ 2 =4$,
|
||||
\item $196883 + 1 = 196884$,
|
||||
\item $1 + \omega = \sup_{n < \omega} 1 + n = \omega \neq \omega +1$,
|
||||
\item $2 \cdot \omega = \sup_{n < \omega} 2\cdot n = \omega$,
|
||||
\item $\omega \cdot 2 =\omega \cdot 1 + \omega = \omega + \omega$..
|
||||
\item $\omega \cdot 2 =\omega \cdot 1 + \omega = \omega + \omega$.
|
||||
\end{itemize}
|
||||
\end{example}
|
||||
}{}
|
||||
|
||||
|
||||
\gist{%
|
||||
\begin{warning}
|
||||
Cardinal arithmetic and ordinal arithmetic are very different!
|
||||
The symbols are the same, but usually we will distinguish
|
||||
|
@ -46,6 +49,7 @@ and
|
|||
\end{warning}
|
||||
|
||||
We will very rarely use ordinal arithmetic.
|
||||
}{}
|
||||
|
||||
\subsection{Cofinality}
|
||||
|
||||
|
@ -100,7 +104,7 @@ We will very rarely use ordinal arithmetic.
|
|||
\begin{itemize}
|
||||
\item $\cf(\aleph_\omega) = \omega$.
|
||||
In fact $\cf(\aleph_{\lambda}) \le \lambda$
|
||||
for limit ordinals $\lambda$
|
||||
for limit ordinals $\lambda \neq 0$
|
||||
(consider $\alpha \mapsto \aleph_\alpha$).
|
||||
\item $\cf(\aleph_{\omega + \omega}) = \omega$.
|
||||
\end{itemize}
|
||||
|
@ -110,17 +114,21 @@ We will very rarely use ordinal arithmetic.
|
|||
$\cf(\beta)$ is a cardinal.
|
||||
\end{lemma}
|
||||
\begin{proof}
|
||||
\gist{%
|
||||
Let $f\colon \alpha \to \beta$ be cofinal.
|
||||
Then $\tilde{f}\colon |\alpha| \to \beta$,
|
||||
the composition with $\alpha \leftrightarrow|\alpha|$
|
||||
is cofinal as well and $|\alpha| \le \alpha$.
|
||||
}{Trivial.}
|
||||
\end{proof}
|
||||
|
||||
\gist{%
|
||||
\begin{question}
|
||||
How does one imagine ordinals with
|
||||
cofinality $> \omega$?
|
||||
\end{question}
|
||||
No idea.
|
||||
}{}
|
||||
|
||||
\begin{definition}
|
||||
An ordinal $\beta$ is \vocab{regular}
|
||||
|
@ -172,6 +180,7 @@ In particular, a regular ordinal is always a cardinal.
|
|||
by \yaref{thm:hessenberg}.
|
||||
\end{proof}
|
||||
|
||||
\gist{%
|
||||
\begin{itemize}
|
||||
\item $\aleph_0, \aleph_1, \aleph_2, \ldots$ are regular,
|
||||
\item $\aleph_\omega$ is singular,
|
||||
|
@ -184,11 +193,13 @@ In particular, a regular ordinal is always a cardinal.
|
|||
\item $\aleph_{\omega_1 + 1}, \ldots$ is regular,
|
||||
\item $\aleph_{\omega_2}$ is singular.
|
||||
\end{itemize}
|
||||
}{}
|
||||
|
||||
\begin{question}[Hausdorff]
|
||||
Is there a regular limit cardinal?
|
||||
\end{question}
|
||||
Maybe. This is independent of $\ZFC$.
|
||||
Maybe. This is independent of $\ZFC$,
|
||||
cf.~\yaref{def:inaccessible}.
|
||||
|
||||
|
||||
\begin{theorem}[Hausdorff]
|
||||
|
@ -197,9 +208,10 @@ Maybe. This is independent of $\ZFC$.
|
|||
\]
|
||||
\end{theorem}
|
||||
\begin{proof}
|
||||
\gist{%
|
||||
Recall that
|
||||
\begin{IEEEeqnarray*}{rCl}
|
||||
\aleph_{\alpha+1}^{\aleph_\beta} &=& |{}^{\aleph_\beta} \aleph_{\alpha+1}|.
|
||||
\aleph_{\alpha+1}^{\aleph_\beta} &=& |\leftindex^{\aleph_\beta} \aleph_{\alpha+1}|.
|
||||
\end{IEEEeqnarray*}
|
||||
\begin{itemize}
|
||||
\item First case: $\beta \ge \alpha+1$.
|
||||
|
@ -209,8 +221,8 @@ Maybe. This is independent of $\ZFC$.
|
|||
\le \left( 2^{\aleph_{\beta}} \right)^{\aleph_\beta}
|
||||
= 2^{\aleph_{\beta} \cdot \aleph_\beta} = 2^{\aleph_\beta} \le \aleph_{\alpha+1}^{\aleph_\beta}.
|
||||
\]
|
||||
Also $\aleph_\alpha^{\aleph_{\beta} = 2^{\aleph_\beta}}$
|
||||
in this case,
|
||||
Also $\aleph_\alpha^{\aleph_{\beta}} = 2^{\aleph_\beta}$
|
||||
in this case (by the same argument),
|
||||
so
|
||||
\[
|
||||
\aleph_{\alpha+1}^{\aleph_{\beta}} = 2^{\aleph_{\beta}}
|
||||
|
@ -224,14 +236,35 @@ Maybe. This is independent of $\ZFC$.
|
|||
is unbounded.
|
||||
So
|
||||
\[
|
||||
{}^{\aleph_{\beta}}\aleph_{\alpha+1} = \bigcup_{\xi < \aleph_{\alpha+1}} {}^{\aleph_\beta} \xi
|
||||
\leftindex^{\aleph_{\beta}}\aleph_{\alpha+1} = \bigcup_{\xi < \aleph_{\alpha+1}} \leftindex^{\aleph_\beta} \xi
|
||||
\]
|
||||
for each $\xi < \aleph_{\alpha+1}$, $|\xi| \le \aleph_\alpha$,
|
||||
hence
|
||||
\[
|
||||
|{}^{\aleph_{\beta}}\xi| \le \aleph_\alpha^{\aleph_\beta}
|
||||
|\leftindex^{\aleph_{\beta}}\xi| \le \aleph_\alpha^{\aleph_\beta}
|
||||
\]
|
||||
for each $\xi < \aleph_{\alpha+1}$.
|
||||
Therefore, \[\aleph_{\alpha+1}^{\aleph_\beta} \le \aleph_{\alpha+1} \cdot \aleph_{\alpha}^{\aleph_{\beta}} \le \aleph_{\alpha+1}^{\aleph_\beta}.\]
|
||||
\end{itemize}
|
||||
}{%
|
||||
$\ge$ is trivial.
|
||||
\begin{itemize}
|
||||
\item First case: $\beta \ge \alpha + 1$.
|
||||
Note that $\gamma \le \beta \implies \aleph_{\gamma}^{\aleph_\beta} = 2^{\aleph_\beta}$,
|
||||
so
|
||||
\[
|
||||
\aleph_{\alpha+1}^{\aleph_\beta} \overset{\alpha+1 \le \beta}{=}
|
||||
2^{\aleph_\beta}
|
||||
\overset{\alpha < \beta}{=} \aleph_\alpha^{\aleph_\beta}
|
||||
\le \aleph_\alpha^{\aleph_\beta} \cdot \aleph_{\alpha+1}.
|
||||
\]
|
||||
\item Second case: $\beta < \alpha+1$:
|
||||
\begin{itemize}
|
||||
\item $\aleph_{\alpha+1}$ is regular, so all $f\colon \aleph_\beta \to \aleph_{\alpha+1}$ are bounded.
|
||||
\item Thus $\leftindex^{\aleph_\beta}\aleph_{\alpha+1} = \bigcup_{\xi < \aleph_{\alpha+1}} \leftindex^{\aleph_\beta} \xi$ for all $\xi < \aleph_{\alpha+1}$.
|
||||
\item So $\aleph_{\alpha+1}^{\aleph_\beta} \le \aleph_{\alpha+1} \aleph_\alpha^{\aleph_\beta}$.
|
||||
\end{itemize}
|
||||
|
||||
\end{itemize}
|
||||
}
|
||||
\end{proof}
|
||||
|
|
|
@ -1,5 +1,5 @@
|
|||
\lecture{13}{2023-11-30}{}
|
||||
|
||||
\gist{%
|
||||
\begin{remark}[``Constructive'' approach to $\omega_1$ ]
|
||||
There are many well-orders on $\omega$.
|
||||
Let $W$ be the set of all such well-orders.
|
||||
|
@ -41,7 +41,9 @@
|
|||
Thus $\otp(\faktor{W}{\sim}, <) = \omega_1$.
|
||||
\todo{move this}
|
||||
\end{remark}
|
||||
}{}
|
||||
|
||||
\gist{%
|
||||
\begin{notation}
|
||||
Let $I \neq \emptyset$
|
||||
and let $\{\kappa_i : i \in I\}$
|
||||
|
@ -57,13 +59,13 @@
|
|||
\]
|
||||
where
|
||||
\[
|
||||
\bigtimes_{i \in I} A_i \coloneqq \{f : f \text{is a function with domain $I$ and $f(i) \in A_i$}\}.
|
||||
\bigtimes_{i \in I} A_i \coloneqq \{f : f \text{ is a function}, \dom(f) = I, \forall i.~f(i) \in A_i\}.
|
||||
\]
|
||||
\end{notation}
|
||||
\begin{remark}
|
||||
\AxC is equivalent to $\forall i \in I.~A_i \neq \emptyset \implies \bigtimes_{i \in I} A_i \neq \emptyset$.
|
||||
\end{remark}
|
||||
|
||||
}{}
|
||||
\begin{theorem}[K\H{o}nig]
|
||||
\yalabel{K\H{o}nig's Theorem}{K\H{o}nig}{thm:koenig}
|
||||
Let $I \neq \emptyset$.
|
||||
|
@ -78,6 +80,7 @@
|
|||
\]
|
||||
\end{theorem}
|
||||
\begin{proof}
|
||||
\gist{%
|
||||
Consider a function $F\colon \bigcup_{i \in I} (\kappa_i \times \{i\}) \to \bigtimes_{i \in I}\lambda_i$.
|
||||
We want to show that $F$ is not surjective.
|
||||
|
||||
|
@ -92,6 +95,14 @@
|
|||
be defined by $i \mapsto \xi_i$.
|
||||
|
||||
Then $f \not\in \ran(F)$.
|
||||
}{%
|
||||
\begin{itemize}
|
||||
\item Consider $F\colon \bigcup_{i \in I}(\kappa_i \times \{i\}) \to \bigtimes_{i \in I} \lambda_i$. Want: $F$ is not surjective.
|
||||
\item Let $\xi_i$ minimal such that $\underbrace{F((\eta,i))(i)}_{\in \lambda_i} \neq \xi$
|
||||
for all $\eta < \kappa_i$.
|
||||
\item $(i \mapsto \eta_i) \not\in \ran(F)$.
|
||||
\end{itemize}
|
||||
}
|
||||
\end{proof}
|
||||
|
||||
\begin{corollary}
|
||||
|
@ -99,6 +110,7 @@
|
|||
it is $\cf(2^{\kappa}) > \kappa$.
|
||||
\end{corollary}
|
||||
\begin{proof}
|
||||
\gist{%
|
||||
If $2^{\kappa}$ is a successor cardinal,
|
||||
then $\cf(2^{\kappa}) = 2^{\kappa} > \kappa$,
|
||||
since successor cardinals are regular.
|
||||
|
@ -115,6 +127,19 @@
|
|||
\sup \{\kappa_i : i < \kappa\} \le \sum_{i \in \kappa} \kappa_i < \prod_{i \in \kappa} \lambda_i = \left( 2^{\kappa} \right)^{\kappa} = 2^{\kappa \cdot \kappa} = 2^{\kappa}
|
||||
\]
|
||||
and $f$ is not cofinal.
|
||||
}{%
|
||||
\begin{itemize}
|
||||
\item Trivial for successors ($\cf(2^{\kappa}) \overset{\text{regular}}{=} 2^{\kappa} > \kappa$).
|
||||
\item Suppose $2^\kappa$ is a limit, $\exists f\colon \kappa \to 2^{\kappa}$ cofinal.
|
||||
Wlog.~$f(i) \in \Card$.
|
||||
But
|
||||
\[
|
||||
\sup \{f(i)) : i < \kappa\} \le \sum_{i \in \kappa} f(i)
|
||||
\overset{\yaref{thm:koenig}}{<} \prod_{i \in \kappa} 2^{\kappa}
|
||||
= (2^{\kappa})^{\kappa} = 2^{\kappa}. ~ ~\qedhere
|
||||
\]
|
||||
\end{itemize}
|
||||
}
|
||||
\end{proof}
|
||||
|
||||
\begin{fact}
|
||||
|
|
|
@ -1,4 +1,5 @@
|
|||
\lecture{14}{2023-12-04}{}
|
||||
\gist{%
|
||||
\begin{abuse}
|
||||
Sometimes we say club
|
||||
instead of club in $\kappa$.
|
||||
|
@ -17,6 +18,7 @@
|
|||
is club in $\kappa$.
|
||||
\end{itemize}
|
||||
\end{example}
|
||||
}{}
|
||||
\begin{lemma}
|
||||
\label{lem:clubintersection}
|
||||
Let $\kappa$ be regular and uncountable.
|
||||
|
@ -34,12 +36,12 @@
|
|||
Let $C_{\beta} \coloneqq \{\xi : \xi > \beta\}$.
|
||||
Clearly this is club
|
||||
but $\bigcap_{\beta < \kappa} C_\beta = \emptyset$.
|
||||
|
||||
\end{warning}
|
||||
\begin{refproof}{lem:clubintersection}
|
||||
\gist{%
|
||||
First let $\alpha = 2$.
|
||||
Let $C, D \subseteq \kappa$
|
||||
be a club.
|
||||
be club.
|
||||
$C \cap D$ is trivially closed:
|
||||
|
||||
Let $\beta < \kappa$. Suppose that $(C \cap D) \cap \beta$
|
||||
|
@ -84,7 +86,17 @@
|
|||
= \sup_{i < \omega} \gamma_{\alpha \cdot n + \beta + 1} \in \bigcap_{\beta < \alpha} C_\beta$,
|
||||
where we have used that.
|
||||
$\cf(\kappa) > \alpha \cdot \omega$.
|
||||
|
||||
}{%
|
||||
\begin{itemize}
|
||||
\item Trivially closed.
|
||||
\item Recursively define $\langle \gamma_i : i \le \alpha \cdot \omega \rangle$, by
|
||||
$\gamma_0 \coloneqq \gamma$,
|
||||
\[\gamma_{\alpha \cdot n + \beta + 1} = \min C_{\beta} \setminus (\gamma_{\alpha \cdot n + \beta} + 1)\]
|
||||
and $\sup$ at limits.
|
||||
\item Then $\sup_{i < \alpha\cdot \omega} \gamma_i \in \bigcap_{\beta < \alpha} C_\beta$
|
||||
(we used $\cf(\kappa) > \alpha\cdot \omega$).
|
||||
\end{itemize}
|
||||
}
|
||||
\end{refproof}
|
||||
|
||||
\begin{definition}
|
||||
|
@ -106,7 +118,9 @@
|
|||
iff for all $\gamma < \alpha$ and $\{X_\beta : \beta < \gamma\} \subseteq F$
|
||||
then $\bigcap \{X_\beta : \beta < \gamma\} \in F$.
|
||||
\end{definition}
|
||||
\gist{%
|
||||
Intuitively, a filter is a collection of ``big'' subsets of $a$.
|
||||
}{}
|
||||
|
||||
\begin{definition}
|
||||
Let $\kappa$ be regular and uncountable.
|
||||
|
@ -126,7 +140,7 @@ We have shown (assuming \AxC to choose contained clubs):
|
|||
Clearly $\emptyset \not\in \cF_\kappa$,
|
||||
$\kappa \in \cF_\kappa$,
|
||||
and $A \in \cF_{\kappa}, A \subseteq B \in \kappa \implies B \in \cF_\kappa$.
|
||||
In \autoref{lem:clubintersection} we are going to show that the intersection
|
||||
In \autoref{lem:clubintersection} showed that the intersection
|
||||
of $< \kappa$ many clubs is club.
|
||||
\end{proof}
|
||||
|
||||
|
@ -146,9 +160,11 @@ We have shown (assuming \AxC to choose contained clubs):
|
|||
If $\langle C_{\beta} : \beta < \kappa \rangle$
|
||||
is a sequence of club subsets of $\kappa$,
|
||||
then $\diagi_{\beta < \kappa} C_{\beta}$
|
||||
contains a club. % TODO: contains or is?
|
||||
contains a club.
|
||||
\end{lemma}
|
||||
\begin{proof}
|
||||
\begin{refproof}{lem:diagiclub}
|
||||
% TODO THINK
|
||||
\gist{
|
||||
Let us fix $\langle C_{\beta} : \beta < \alpha \rangle$.
|
||||
Write $D_{\beta} \coloneqq \bigcap \{C_{\gamma} : \gamma \le \beta\} $
|
||||
for $\beta < \kappa$.
|
||||
|
@ -192,7 +208,7 @@ We have shown (assuming \AxC to choose contained clubs):
|
|||
\begin{subproof}
|
||||
Fix $\gamma < \kappa$.
|
||||
We need to find $\delta > \gamma$
|
||||
with $\gamma \in \diagi_{\beta < \kappa} D_\beta$.
|
||||
with $\delta \in \diagi_{\beta < \kappa} D_\beta$.
|
||||
|
||||
Define $\langle \gamma_n : n < \omega \rangle$
|
||||
as follows:
|
||||
|
@ -212,20 +228,57 @@ We have shown (assuming \AxC to choose contained clubs):
|
|||
for some $n < \omega$.
|
||||
For $m \ge n$, $\gamma_{m+1} \in D_{\gamma_m} \subseteq D_{\gamma_n} \subseteq D_{\overline{\gamma}}$.
|
||||
So $D_{\overline{\gamma}} \cap \delta$ is unbounded
|
||||
in $\gamma$, hence $\delta \in D_{\overline{\gamma}}$.
|
||||
in $\delta$, hence $\delta \in D_{\overline{\gamma}}$.
|
||||
\end{subproof}
|
||||
\end{proof}
|
||||
}{%
|
||||
\begin{itemize}
|
||||
\item Fix $\langle C_\beta : \beta < \alpha \rangle$.
|
||||
Set $D_{\beta} \coloneqq \bigcap_{\gamma \le \beta} D_{\gamma}$.
|
||||
It suffices to analyze $D_{\beta}$.
|
||||
\item $\diagi_{\beta < \kappa} D_{\beta}$ is closed in $\kappa$:
|
||||
\begin{itemize}
|
||||
\item Let $\gamma < \kappa$ such that $\left( \diagi_{\beta < \kappa} D_{\beta}\right) \cap \gamma$ unbounded in $\gamma$.
|
||||
Want $\gamma \in \diagi_{\beta < \kappa} D_\beta$.
|
||||
\item Let $\beta_0 < \gamma$. Want $\gamma \in D_{\beta_0}$.
|
||||
\item $D_{\beta_0} \cap \gamma$ is unbounded in $\gamma$
|
||||
($D_{\beta_0} \setminus \beta_0 \supseteq \diagi_{\beta < \kappa} D_{\beta} \setminus \beta_0$)
|
||||
$\overset{D_{\beta_0} \text{ closed}}{\implies} \gamma \in D_{\beta_0}$.
|
||||
\end{itemize}
|
||||
\item $\diagi_{\beta < \kappa} D_\beta$ is unbounded in $\kappa$:
|
||||
\begin{itemize}
|
||||
\item Fix $\gamma < \kappa$. We need to find $\diagi_{\beta < \kappa} D_\beta \ni \delta > \gamma$.
|
||||
\item Define $\langle \gamma_n : n < \omega \rangle$
|
||||
by $\gamma_0 \coloneqq \gamma$,
|
||||
$\gamma_{n+1} \coloneqq \min D_{\gamma_n} \setminus (\gamma_n + 1)$,
|
||||
$\delta \coloneqq \sup_n \gamma_n \overset{\cf(\kappa) > \omega}{<} \kappa$
|
||||
\item Want $\delta \in \diagi_{\beta < \kappa} D_\beta$,
|
||||
i.e.~$\forall \epsilon < \delta.~\delta\in D_\epsilon$.
|
||||
|
||||
If $\epsilon < \delta$, then $\epsilon \le \gamma_n$
|
||||
for $n$ large enough,
|
||||
so $\gamma_{m+1} \in D_{\gamma_m} \subseteq D_{\gamma_n} \subseteq D_\epsilon$
|
||||
for $m \ge n$.
|
||||
Thus $\sup(D_\epsilon \cap \delta) = \delta$
|
||||
$\overset{D_\epsilon \text{ closed}}{\implies} \delta \in D_{\epsilon}$.
|
||||
\end{itemize}
|
||||
|
||||
|
||||
\end{itemize}
|
||||
|
||||
}
|
||||
\end{refproof}
|
||||
\begin{remark}+
|
||||
$\diagi_{\beta < \kappa} D_{\beta}$ actually
|
||||
$\diagi_{\beta < \kappa} C_{\beta}$ actually
|
||||
\emph{is} a club:
|
||||
It suffices to show that $\diagi_{\beta < \kappa} D_\beta$ is closed.
|
||||
Let $\lambda < \kappa$ be a limit ordinal.
|
||||
Suppose that $\lambda \not\in \diagi_{\beta < \kappa} D_\beta$.
|
||||
Then there exists $\alpha < \lambda$ such that
|
||||
$\lambda \not\in D_\alpha$.
|
||||
Since $D_\alpha$ is closed,
|
||||
we get $\sup(D_{\alpha} \cap \lambda) < \lambda$.
|
||||
In particular $\sup (\lambda \cap\diagi_{\beta < \kappa} D_{\beta}) \le \alpha \cup \sup(D_\alpha \cap \lambda) < \lambda$.
|
||||
It suffices to show that $\diagi_{\beta < \kappa} C_\beta$ is closed.
|
||||
This can be shown in the same way as for $\diagi_{\beta < \kappa} D_\beta$.
|
||||
% Let $\lambda < \kappa$ be a limit ordinal.
|
||||
% Suppose that $\lambda \not\in \diagi_{\beta < \kappa} D_\beta$.
|
||||
% Then there exists $\alpha < \lambda$ such that
|
||||
% $\lambda \not\in D_\alpha$.
|
||||
% Since $D_\alpha$ is closed,
|
||||
% we get $\sup(D_{\alpha} \cap \lambda) < \lambda$.
|
||||
% In particular $\sup (\lambda \cap\diagi_{\beta < \kappa} D_{\beta}) \le \alpha \cup \sup(D_\alpha \cap \lambda) < \lambda$.
|
||||
\end{remark}
|
||||
|
||||
\begin{definition}
|
||||
|
|
|
@ -28,6 +28,7 @@
|
|||
$f(\alpha) = \nu$ for all $\alpha \in T$.
|
||||
\end{theorem}
|
||||
\begin{proof}
|
||||
\gist{%
|
||||
Let $S, f$ be given.
|
||||
For $\nu < \kappa$ set $S_\nu \coloneqq \{\alpha \in S : f(\alpha) = \nu\}$. % f^{-1}(\nu)$.
|
||||
We aim to show that one of the $S_\nu$ is stationary.
|
||||
|
@ -41,6 +42,16 @@
|
|||
Hence $f(\alpha) \neq \nu$ for all $\nu < \alpha$,
|
||||
so $f(\alpha) \ge \alpha$.
|
||||
But $f$ is regressive $\lightning$
|
||||
}{%
|
||||
\begin{itemize}
|
||||
\item For $\nu < \kappa$ set $S_\nu \coloneqq \{\alpha \in S : f(\alpha) = \nu\}$.
|
||||
\item Suppose none of the $S_\nu$ is stationary,
|
||||
i.e.~ $\forall \nu < \kappa.~\exists C_\nu \text{ club}.~C_\nu \cap S_\nu = \neq$.
|
||||
\item $\diagi_{\nu < \alpha} C_\nu$ is club.
|
||||
\item Pick $\alpha \in C \cap S$.
|
||||
But then $\forall \nu < \alpha.~\alpha \in C_\nu$, i.e.~$f(\alpha) \ge \alpha$.
|
||||
\end{itemize}
|
||||
}
|
||||
\end{proof}
|
||||
|
||||
\subsection{Some model theory and a second proof of Fodor's Theorem}
|
||||
|
@ -70,7 +81,7 @@ Recall the following:
|
|||
over $V_\theta$ for $\phi$
|
||||
is a function
|
||||
\[
|
||||
f\colon {}^k V_\theta \to V_\theta,
|
||||
f\colon \leftindex^k V_\theta \to V_\theta,
|
||||
\]
|
||||
where $k$ is the number of free variables of
|
||||
$\exists v.~\phi$
|
||||
|
@ -91,9 +102,10 @@ to be an elementary substructure of $V_\theta$.
|
|||
(where $k$ is the number of free variables of $\exists v.~\phi$)
|
||||
$f_\phi(x_1,\ldots,x_k) \in X$,
|
||||
then $X \prec V_{\theta}$.
|
||||
|
||||
\end{lemma}
|
||||
|
||||
% TODO ANKI-MARKER
|
||||
|
||||
Let's do a second proof of \yaref{thm:fodor}.
|
||||
\begin{refproof}{thm:fodor}
|
||||
Fix $\theta > \kappa$ and look at $V_{\theta}$.
|
||||
|
|
|
@ -42,6 +42,7 @@ and $\emptyset \not\in F, \kappa \in F$.
|
|||
either $X \in F$ or $\kappa \setminus X \in F$.
|
||||
\end{definition}
|
||||
|
||||
\gist{%
|
||||
\begin{example}
|
||||
Examples of filters:
|
||||
\begin{enumerate}[(a)]
|
||||
|
@ -55,6 +56,7 @@ and $\emptyset \not\in F, \kappa \in F$.
|
|||
Then $\cF_\kappa \coloneqq \{X \subseteq \kappa: \exists C \subseteq \kappa \text{ club in $\kappa$}. C \subseteq X\}$.
|
||||
\end{enumerate}
|
||||
\end{example}
|
||||
}{Let $\cF_\kappa \coloneqq \{X \subseteq \kappa : \exists C \subseteq \kappa \text{ club in } \kappa\}$.}
|
||||
\begin{question}
|
||||
Is $\cF_\kappa$ an ultrafilter?
|
||||
\end{question}
|
||||
|
|
|
@ -1,6 +1,7 @@
|
|||
\lecture{18}{2023-12-18}{Large cardinals}
|
||||
|
||||
\begin{definition}
|
||||
\label{def:inaccessible}
|
||||
\begin{itemize}
|
||||
\item A cardinal $\kappa$ is called \vocab{weakly inaccessible}
|
||||
iff $\kappa$ is uncountable,\footnote{dropping this we would get that $\aleph_0$ is inaccessible}
|
||||
|
@ -19,7 +20,7 @@
|
|||
|
||||
\begin{theorem}
|
||||
If $\kappa$ is inaccessible,
|
||||
then $V_\kappa \models \ZFC$.\footnote{More formally $(V_{\kappa}, \in ) \models\ZFC$.}
|
||||
then $V_\kappa \models \ZFC$.\footnote{More formally $(V_{\kappa}, \in\defon{V_\kappa}) \models\ZFC$.}
|
||||
\end{theorem}
|
||||
\begin{proof}
|
||||
Since $\kappa$ is regular, \AxRep works.
|
||||
|
@ -145,11 +146,11 @@
|
|||
|
||||
1. $\implies$ 2.
|
||||
Fix $U$.
|
||||
Let ${}^{\kappa}V$ be the class of all function from $\kappa$ to $V$.
|
||||
For $f,g \in {}^{\kappa}V$ define
|
||||
Let $\leftindex^{\kappa}V$ be the class of all function from $\kappa$ to $V$.
|
||||
For $f,g \in \leftindex^{\kappa}V$ define
|
||||
$f \sim g :\iff \{\xi < \kappa : f(\xi) = g(\xi)\} \in U$.
|
||||
This is an equivalence relation since $U$ is a filter.
|
||||
Write $[f] = \{g \in {}^\kappa V : g \sim ~ f \land g \in V_\alpha \text{ for the least $\alpha$ such that there is some $h \in V_\alpha$ with $h \sim f$}\}$.%
|
||||
Write $[f] = \{g \in \leftindex^\kappa V : g \sim ~ f \land g \in V_\alpha \text{ for the least $\alpha$ such that there is some $h \in V_\alpha$ with $h \sim f$}\}$.%
|
||||
\footnote{This is know as \vocab{Scott's Trick}.
|
||||
Note that by defining equivalence classes
|
||||
in the usual way (i.e.~without this trick),
|
||||
|
@ -164,7 +165,7 @@
|
|||
|
||||
This is independent of the choice of the representatives,
|
||||
so it is well-defined.
|
||||
Now write $\cF = \{[f] : f \in {}^{\kappa}V\}$
|
||||
Now write $\cF = \{[f] : f \in \leftindex^{\kappa}V\}$
|
||||
and look at $(\cF, \tilde{\in})$.
|
||||
|
||||
The key to the construction is \yaref{thm:los} (see below).
|
||||
|
@ -188,7 +189,7 @@ Then
|
|||
Let us show that $(\cF, \tilde{\in })$
|
||||
is well-founded.
|
||||
Otherwise there is $\langle f_n : n < \omega \rangle$
|
||||
such that $f_n \in {}^\kappa V$
|
||||
such that $f_n \in \leftindex^\kappa V$
|
||||
and $[f_{n+1}] \tilde{\in } [f_n]$ for all $n < \omega$.
|
||||
|
||||
Then $X_n \coloneqq \{\xi < \kappa : f_{n+1}(\xi) \in f_n(\xi)\} \in U$,
|
||||
|
@ -228,7 +229,7 @@ So $j(\alpha) \le \alpha$.
|
|||
|
||||
\begin{theorem}[\L o\'s]
|
||||
\yalabel{\L o\'s's Theorem}{\L o\'s}{thm:los}
|
||||
For all formulae $\phi$ and for all $f_1, \ldots, f_k \in {}^{\kappa} V$,
|
||||
For all formulae $\phi$ and for all $f_1, \ldots, f_k \in \leftindex^{\kappa} V$,
|
||||
\[
|
||||
(\cF, \tilde{\in}) \models \phi([f_1], \ldots, [f_k])
|
||||
\iff \{\xi < \kappa : (V, \in ) \models \phi(f_1(\xi), \ldots, f_k(\xi))\} \in U.
|
||||
|
|
|
@ -24,6 +24,7 @@
|
|||
\usepackage{multirow}
|
||||
\usepackage{float}
|
||||
\usepackage{scalerel}
|
||||
\usepackage{leftindex}
|
||||
%\usepackage{algorithmicx}
|
||||
|
||||
\newcounter{subsubsubsection}[subsubsection]
|
||||
|
|
Loading…
Reference in a new issue