some small changes, gist
Some checks failed
Build latex and deploy / checkout (push) Failing after 16m11s

This commit is contained in:
Josia Pietsch 2024-02-13 02:00:58 +01:00
parent b1b2a5974d
commit ebdf929dd7
Signed by: josia
GPG key ID: E70B571D66986A2D
13 changed files with 336 additions and 119 deletions

View file

@ -2,7 +2,7 @@
% Model-theoretic concepts and ultraproducts % Model-theoretic concepts and ultraproducts
\section{$\ZFC$} \section{\texorpdfstring{$\ZFC$}{ZFC}}
% 1900, Russel's paradox % 1900, Russel's paradox
\todo{Russel's Paradox} \todo{Russel's Paradox}

View file

@ -104,12 +104,12 @@
We write $f\colon d \to b$. We write $f\colon d \to b$.
The set of all function from $d$ to $b$ The set of all function from $d$ to $b$
is denoted by ${}^d b$ or $b^d$. is denoted by $\leftindex^d b$ or $b^d$.
\end{definition} \end{definition}
\begin{fact} \begin{fact}
Given sets $d, b$ then Given sets $d, b$ then
${}^d b$ exists. $\leftindex^d b$ exists.
\end{fact} \end{fact}
\begin{proof} \begin{proof}
Apply again \AxAus over $\cP(d \times b)$. Apply again \AxAus over $\cP(d \times b)$.

View file

@ -103,7 +103,7 @@ Furthermore $F\,''a \coloneqq \{y : \exists x \in a .~(x,y) \in F\}$.
and $\phi$ does not have quantifiers and $\phi$ does not have quantifiers
ranging over classes.% ranging over classes.%
\footnote{If one removes the restriction regarding \footnote{If one removes the restriction regarding
quantifiers another theory, called quantifiers, another theory, called
\vocab{Morse-Kelly} set theory, is obtained.} \vocab{Morse-Kelly} set theory, is obtained.}
\end{axiom} \end{axiom}
@ -113,7 +113,8 @@ Furthermore $F\,''a \coloneqq \{y : \exists x \in a .~(x,y) \in F\}$.
\todo{the following was actually done in lecture 9} \todo{the following was actually done in lecture 9}
$\BGC$ (in German often NBG) is defined to be $\BG$ $\BGC$ (in German often NBG\footnote{\vocab{Neumann-Bernays-Gödel}})
is defined to be $\BG$
together with the additional axiom: together with the additional axiom:
\begin{axiom}[Choice] \begin{axiom}[Choice]
\[ \[
@ -212,7 +213,7 @@ $\ZFC \vdash \phi$ then $\BGC \vdash \phi$.
&&~ ~\overline{g}(0) = x \land \forall m \in \omega.~(m+1 \in \dom(\overline{g}) \implies \overline{g}(m+1) = f(\overline{g}(m)))\}. &&~ ~\overline{g}(0) = x \land \forall m \in \omega.~(m+1 \in \dom(\overline{g}) \implies \overline{g}(m+1) = f(\overline{g}(m)))\}.
\end{IEEEeqnarray*} \end{IEEEeqnarray*}
$G$ exists as it can be obtained by \AxAus $G$ exists as it can be obtained by \AxAus
from ${}^{< \omega}M$. from $\leftindex^{< \omega}M$.
By induction, By induction,
for every $n \in \omega$, for every $n \in \omega$,
there is a $\overline{g} \in G$ there is a $\overline{g} \in G$

View file

@ -48,6 +48,7 @@ An alternative way of formulating this is
\end{definition} \end{definition}
\begin{theorem} \begin{theorem}
\yalabel{Recursion Theorem}{recursion}{thm:recursion}
Let $R$ be a well-founded Let $R$ be a well-founded
and set-like relation on $A$ (i.e.~$R \subseteq A \times A$). and set-like relation on $A$ (i.e.~$R \subseteq A \times A$).
@ -59,11 +60,12 @@ An alternative way of formulating this is
Then there is a unique function $f$ on $A$ Then there is a unique function $f$ on $A$
such that for all $x \in A$, such that for all $x \in A$,
\[ \[
(F\defon{ \{y \in A : (y,x) \in R\}}, x, F(x)) \in D. (F\defon{ \{y \in A : (y,x) \in R\}}, x, F(x)) \in D\gist{,}{.}
\] \]
I.e.~$F(x)$ is computed from $F\defon{\{y \in A: (y,x) \in R\}}$. \gist{i.e.~$F(x)$ is computed from $F\defon{\{y \in A: (y,x) \in R\}}$.}{}
\end{theorem} \end{theorem}
\begin{proof} \begin{proof}
\gist{%
Uniqueness: Uniqueness:
Let $F, F'$ be two such functions. Let $F, F'$ be two such functions.
@ -106,7 +108,7 @@ An alternative way of formulating this is
If $x \in \dom(F)$ and $y \in A$ with $(y,x) \in R$, If $x \in \dom(F)$ and $y \in A$ with $(y,x) \in R$,
then $y \in \dom(F)$ then $y \in \dom(F)$
and $(F\defon{\{y : (y,x) \in R\}}, x,F(x)) \in D$. and \[(F\defon{\{y : (y,x) \in R\}}, x,F(x)) \in D.\]
We need to show that $\dom(F) = A$. We need to show that $\dom(F) = A$.
This holds by induction: This holds by induction:
@ -121,8 +123,26 @@ An alternative way of formulating this is
But then $f \cup (x,z)$, But then $f \cup (x,z)$,
where $z$ is unique such that $(f\defon{\{y : (y,x) \in R\}}, x, z) \in D$, where $z$ is unique such that $(f\defon{\{y : (y,x) \in R\}}, x, z) \in D$,
is good $\lightning$. is good $\lightning$.
}{
\begin{itemize}
\item Uniqueness:
Consider $\overline{A} \coloneqq \{x \in A : F(x) \neq F'(x)\}$
for two such functions. If $\overline{A} \neq \emptyset$,
there is a minimal element $\lightning$.
\item Existence:
\begin{itemize}
\item call set-function $f$ \emph{good} iff:
\begin{itemize}
\item $\dom(f) \subseteq A$,
\item $x \in \dom(f), y <_R x \implies y \in \dom(f)$,
\item $\forall x \in \dom(f).~(f\defon{\{y \in A : y <_R x\}}, x, f(x)) \in D$.
\end{itemize}
\item $F \coloneqq \bigcup \{f : f \text{ good}\}$ (comprehension)
\item $\dom F = A$ (induction).
\end{itemize}
\end{itemize}
}
\end{proof} \end{proof}

View file

@ -1,6 +1,5 @@
\lecture{10}{}{} % Mirko \lecture{10}{}{} % Mirko
\subsubsection{Applications of induction and recursion}
Applications of induction and recursion:
\begin{fact} \begin{fact}
For every set $x$ there is a transitive set $t$ For every set $x$ there is a transitive set $t$
such that $x \in t$. such that $x \in t$.
@ -14,7 +13,7 @@ Applications of induction and recursion:
Once we have such a function, Once we have such a function,
$\{x\} \cup \bigcup \ran(F)$ $\{x\} \cup \bigcup \ran(F)$
is a set as desired. is a set as desired.
To get this $F$ using the recursion theorem, To get this $F$ using the \yaref{thm:recursion},
pick $D$ such that pick $D$ such that
\[ \[
(\emptyset, 0, \{x\}) \in D (\emptyset, 0, \{x\}) \in D
@ -23,7 +22,7 @@ Applications of induction and recursion:
\[ \[
(f, n+1, \bigcup\bigcup \ran(f)) \in D. (f, n+1, \bigcup\bigcup \ran(f)) \in D.
\] \]
The recursion theorem then gives a function The \yaref{thm:recursion} then gives a function
such that such that
\begin{IEEEeqnarray*}{rCl} \begin{IEEEeqnarray*}{rCl}
F(0) &=& \{x\},\\ F(0) &=& \{x\},\\
@ -51,21 +50,30 @@ Applications of induction and recursion:
}{} }{}
\begin{lemma} \begin{lemma}
There is a function $F\colon \OR \to V$ There is a function $F\colon \OR \to V$
such that $F(\alpha) = \bigcup \{\cP(F(\beta)): \beta < \alpha\}$. such that
\gist{$F(\alpha) = \bigcup \{\cP(F(\beta)): \beta < \alpha\}$.}{%
$F(\alpha) = \bigcup_{\beta < \alpha} \cP(F(\beta))$.
}
\gist{}{%
$F(\alpha)$ is denoted by $V_\alpha$.
These are called the \vocab{rank initial segments} of $V$.
}
\end{lemma} \end{lemma}
\begin{proof} \begin{proof}
Use the recursion theorem with $R = \in $ Use the \yaref{thm:recursion} with $R = \in $
and $(w,x,y) \in D$ iff and $(w,x,y) \in D$ iff
\[ \[
y = \bigcup \{\cP(\overline{y}) : \overline{y} \in \ran(w)\}. y = \bigcup \{\cP(\overline{y}) : \overline{y} \in \ran(w)\}.
\] \]
This function has the following properties: \gist{%
\begin{IEEEeqnarray*}{rCl} This function has the following properties:
F(0) &=& \bigcup \emptyset = \emptyset,\\ \begin{IEEEeqnarray*}{rCl}
F(1) &=& \bigcup \{\cP(\emptyset)\} = \bigcup \{\{\emptyset\} \} = \{\emptyset\},\\ F(0) &=& \bigcup \emptyset = \emptyset,\\
F(2) &=& \bigcup \{\cP(\emptyset), \cP(\{\emptyset\})\} = \bigcup \{\{\emptyset\}, \{\emptyset, \{\emptyset\} \} \} = \{\emptyset, \{\emptyset\} \},\\ F(1) &=& \bigcup \{\cP(\emptyset)\} = \bigcup \{\{\emptyset\} \} = \{\emptyset\},\\
\ldots F(2) &=& \bigcup \{\cP(\emptyset), \cP(\{\emptyset\})\} = \bigcup \{\{\emptyset\}, \{\emptyset, \{\emptyset\} \} \} = \{\emptyset, \{\emptyset\} \},\\
\end{IEEEeqnarray*} \ldots
\end{IEEEeqnarray*}
}{}
It is easy to prove by induction: It is easy to prove by induction:
\begin{enumerate}[(a)] \begin{enumerate}[(a)]
@ -76,16 +84,23 @@ Applications of induction and recursion:
for $\lambda \in \OR$ a limit. for $\lambda \in \OR$ a limit.
\end{enumerate} \end{enumerate}
\end{proof} \end{proof}
\gist{%
\begin{notation} \begin{notation}
Usually, one writes $V_\alpha$ for $F(\alpha)$. Usually, one writes $V_\alpha$ for $F(\alpha)$.
They are called the \vocab{rank initial segments} of $V$. They are called the \vocab{rank initial segments} of $V$.
\end{notation} \end{notation}
}{}
\begin{lemma} \begin{lemma}
\gist{%
If $x$ is any set, then there is some $\alpha \in \OR$ If $x$ is any set, then there is some $\alpha \in \OR$
such that $x \in V_\alpha$, such that $x \in V_\alpha$,
i.e.~$V = \bigcup \{V_{\alpha} : \alpha \in \OR\}$. i.e.~$V = \bigcup \{V_{\alpha} : \alpha \in \OR\}$.
}{
$V = \bigcup_{\alpha \in \OR} V_\alpha$.
}
\end{lemma} \end{lemma}
\begin{proof} \begin{proof}
\gist{%
We use induction on the well-founded $\in$-relation. We use induction on the well-founded $\in$-relation.
Let $A = \bigcup \{V_\alpha : \alpha \in \OR\}$. Let $A = \bigcup \{V_\alpha : \alpha \in \OR\}$.
We need to show that $A = V$. We need to show that $A = V$.
@ -103,6 +118,7 @@ Usually, one writes $V_\alpha$ for $F(\alpha)$.
In other words $x \subseteq V_\alpha$, In other words $x \subseteq V_\alpha$,
hence $x \in V_{\alpha+1}$. hence $x \in V_{\alpha+1}$.
}{Induction on $\in$.}
\end{proof} \end{proof}
\begin{lemma}[\vocab{Transitive collapse}/\vocab{Mostowski collapse}] \begin{lemma}[\vocab{Transitive collapse}/\vocab{Mostowski collapse}]
@ -118,29 +134,43 @@ Usually, one writes $V_\alpha$ for $F(\alpha)$.
with $x \in y \iff (F(x),F(y)) \in R$ for $x,y \in B$. with $x \in y \iff (F(x),F(y)) \in R$ for $x,y \in B$.
\end{lemma} \end{lemma}
\begin{proof} \begin{proof}
``$\impliedby$'' Suppose that $R$ is ill-founded ``$\impliedby$''
(i.e.~not well-founded). \gist{%
Then there is some $(y_n : n < \omega)$ such that $y_n \in A$ Suppose that $R$ is ill-founded
and $(y_{n+1}, y_n) \in R$ for all $n < \omega$. (i.e.~not well-founded).
But then if $F$ is an isomorphism as above, Then there is some $(y_n : n < \omega)$ such that $y_n \in A$
\[ and $(y_{n+1}, y_n) \in R$ for all $n < \omega$.
F^{-1}(Y_{n+1}) \in F^{-1}(Y_n) But then if $F$ is an isomorphism as above,
\] \[
for all $n < \omega$ $\lightning$ F^{-1}(Y_{n+1}) \in F^{-1}(Y_n)
\]
for all $n < \omega$ $\lightning$
}{%
Trivial, since $\in$ is well-founded.
}
``$\implies$ '' Suppose that $R$ is well-founded. ``$\implies$ ''
We want a transitive class $B$ and a function $F\colon B \leftrightarrow A$ \gist{%
such that Suppose that $R$ is well-founded.
\[ We want a transitive class $B$ and a function $F\colon B \leftrightarrow A$
x \in y \iff (F(x), F(y)) \in R. such that
\] \[
Equivalently $G\colon A \leftrightarrow B$ x \in y \iff (F(x), F(y)) \in R.
with $(x,y) \in R$ iff $G(x) \in G(y)$ for all $x,y \in A$. \]
Equivalently $G\colon A \leftrightarrow B$
with $(x,y) \in R$ iff $G(x) \in G(y)$ for all $x,y \in A$.
In other words, $G(y) = \{G(x) : (x,y) \in R\}$. In other words, $G(y) = \{G(x) : (x,y) \in R\}$.
Such a function $G$ and class $B$ exist by the recursion theorem. Such a function $G$ and class $B$ exist by the \yaref{thm:recursion}.
}{Use recursion to define $F(y) \coloneqq \{F(x) : (x,y) \in R\}$.}
\end{proof} \end{proof}
As a consequence of the \yaref{lem:mostowski},
we get that if $<$ is a well-order on a set $a$
then there is some transitive set $b$
with $(b, \in\defon{b}) \cong (a, <)$.
\begin{lemma}[\vocab{Rank function}] \begin{lemma}[\vocab{Rank function}]
Let $R$ be a well-founded and set-like binary relation Let $R$ be a well-founded and set-like binary relation
on a class $A$. on a class $A$.
@ -149,7 +179,7 @@ Usually, one writes $V_\alpha$ for $F(\alpha)$.
\[(x,y) \in R \implies F(x) < F(y).\] \[(x,y) \in R \implies F(x) < F(y).\]
\end{lemma} \end{lemma}
\begin{proof} \begin{proof}
By the recursion theorem, By the \yaref{thm:recursion},
there is $F$ such that there is $F$ such that
\[ \[
F(y) = \sup \{F(x) + 1 : (x,y) \in R\}. F(y) = \sup \{F(x) + 1 : (x,y) \in R\}.

View file

@ -2,12 +2,6 @@
\subsection{Cardinals} \subsection{Cardinals}
Consequence of the Mostowski collapse:
If $<$ is a well-order on a set $a$
then there is some transitive $b$
with $(b, \in\defon{b}) \cong (a, <)$.
\begin{definition} \begin{definition}
Let $a$ be any set. Let $a$ be any set.
The \vocab{cardinality} of $a$ The \vocab{cardinality} of $a$
@ -16,8 +10,10 @@ with $(b, \in\defon{b}) \cong (a, <)$.
such that there is some bijection $f\colon \alpha \to a$. such that there is some bijection $f\colon \alpha \to a$.
An ordinal $\alpha$ is called a \vocab{cardinal}, An ordinal $\alpha$ is called a \vocab{cardinal},
iff there is some set $a$ with $|a| = \alpha$ iff \gist{%
(equivalently, $|\alpha| = \alpha$). there is some set $a$ with $|a| = \alpha$
(equivalently, $|\alpha| = \alpha$).%
}{$|\alpha| = \alpha$.}
\end{definition} \end{definition}
We often write $\kappa, \lambda, \ldots$ for cardinals. We often write $\kappa, \lambda, \ldots$ for cardinals.
@ -27,23 +23,28 @@ We often write $\kappa, \lambda, \ldots$ for cardinals.
there is come cardinal $\lambda > \kappa$. there is come cardinal $\lambda > \kappa$.
\end{lemma} \end{lemma}
\begin{proof} \begin{proof}
Consider the powerset of $\kappa$. \gist{%
We know that there is no surjection $\kappa \twoheadrightarrow \cP(\kappa)$. Consider the powerset of $\kappa$.
Hence $\kappa < |2^{\kappa}|$. We know that there is no surjection $\kappa \twoheadrightarrow \cP(\kappa)$.
Hence $\kappa < |2^{\kappa}|$.
}{$\kappa < |2^{\kappa}|$.}
\end{proof} \end{proof}
\begin{definition} \begin{definition}
For each cardinal $\kappa$, For each cardinal $\kappa$,
$\kappa^+$ denotes the least cardinal $\lambda > \kappa$. $\kappa^+$ denotes the least cardinal $\lambda > \kappa$.
\end{definition} \end{definition}
\gist{%
\begin{warning} \begin{warning}
This has nothing to do with the ordinal successor of $\kappa$. This has nothing to do with the ordinal successor of $\kappa$.
\end{warning} \end{warning}
}{}
\begin{lemma} \begin{lemma}
Let $X$ be any set of cardinals. Let $X$ be any set of cardinals.
Then $\sup X$ is a cardinal. Then $\sup X$ is a cardinal.
\end{lemma} \end{lemma}
\begin{proof} \begin{proof}
\gist{%
If there is some $\kappa \in X$ with $\lambda \le \kappa$ If there is some $\kappa \in X$ with $\lambda \le \kappa$
for all $\lambda \in X$, for all $\lambda \in X$,
then $\kappa = \sup(X)$ is a cardinal. then $\kappa = \sup(X)$ is a cardinal.
@ -62,8 +63,19 @@ We often write $\kappa, \lambda, \ldots$ for cardinals.
However, there exists $\mu \twoheadrightarrow \sup(X)$, However, there exists $\mu \twoheadrightarrow \sup(X)$,
hence also $\mu \twoheadrightarrow \lambda$ hence also $\mu \twoheadrightarrow \lambda$
(which is in contradiction to $\lambda$ being a cardinal). (which is in contradiction to $\lambda$ being a cardinal).
}{%
\begin{itemize}
\item If $\sup(X) \in X$ this is trivial.
\item Let $\sup(X) \not\in X$, $\mu \coloneqq |\sup(X)|$.
\begin{itemize}
\item Suppose that $\sup(X)$ is not a cardinal.
Then $\mu \in \sup(X)$, since $\sup(X) \in \OR$.
\item $\exists \lambda \in X.~\lambda > \mu$ $\lightning$.
\end{itemize}
\end{itemize}
}
\end{proof} \end{proof}
We may now use the recursion theorem We may now use the \yaref{lem:recursion}
to define a sequence $\langle \aleph_\alpha : \alpha \in \OR \rangle$ to define a sequence $\langle \aleph_\alpha : \alpha \in \OR \rangle$
with the following properties: with the following properties:
\begin{IEEEeqnarray*}{rCl} \begin{IEEEeqnarray*}{rCl}
@ -72,7 +84,7 @@ with the following properties:
\aleph_{\lambda} &=& \sup \{\aleph_\alpha : \alpha < \lambda\}. \aleph_{\lambda} &=& \sup \{\aleph_\alpha : \alpha < \lambda\}.
\end{IEEEeqnarray*} \end{IEEEeqnarray*}
Each $\aleph_\alpha$ is a cardinal. Each $\aleph_\alpha$ is a cardinal.
Also, a trivial induction show that $\alpha \le \aleph_\alpha$. Also, a trivial induction shows that $\alpha \le \aleph_\alpha$.
In particular $|\alpha| \le \aleph_{\alpha}$. In particular $|\alpha| \le \aleph_{\alpha}$.
Therefore the $\aleph_\alpha$ are all the infinite cardinals: Therefore the $\aleph_\alpha$ are all the infinite cardinals:
If $a$ is any infinite set, then $|a| \le \aleph_{|a|}$, If $a$ is any infinite set, then $|a| \le \aleph_{|a|}$,
@ -84,7 +96,7 @@ so $|a| = \aleph_\beta$ for some $\beta \le |\alpha|$.
\end{notation} \end{notation}
\begin{notation} \begin{notation}
Let ${}^a b \coloneqq \{f : f \text{ is a function}, \dom(f) = \alpha, \ran(f) \subseteq b\}$. Let $\leftindex^a b \coloneqq \{f : f \text{ is a function}, \dom(f) = \alpha, \ran(f) \subseteq b\}$.
\end{notation} \end{notation}
\begin{definition}[Cardinal arithmetic] \begin{definition}[Cardinal arithmetic]
@ -93,12 +105,14 @@ so $|a| = \aleph_\beta$ for some $\beta \le |\alpha|$.
\begin{IEEEeqnarray*}{rCl} \begin{IEEEeqnarray*}{rCl}
\kappa + \lambda &\coloneqq & |\{0\} \times \kappa \cup \{1\} \times \lambda|,\\ \kappa + \lambda &\coloneqq & |\{0\} \times \kappa \cup \{1\} \times \lambda|,\\
\kappa \cdot \lambda &\coloneqq & |\kappa \times \lambda|,\\ \kappa \cdot \lambda &\coloneqq & |\kappa \times \lambda|,\\
\kappa^{\lambda} &\coloneqq & |{}^{\lambda}\kappa|. \kappa^{\lambda} &\coloneqq & |\leftindex^{\lambda}\kappa|.
\end{IEEEeqnarray*} \end{IEEEeqnarray*}
\end{definition} \end{definition}
\gist{%
\begin{warning} \begin{warning}
This is very different from ordinal arithmetic! This is very different from ordinal arithmetic!
\end{warning} \end{warning}
}{}
\begin{theorem}[Hessenberg] \begin{theorem}[Hessenberg]
\label{thm:hessenberg} \label{thm:hessenberg}
@ -106,7 +120,6 @@ so $|a| = \aleph_\beta$ for some $\beta \le |\alpha|$.
\[ \[
\aleph_\alpha \cdot \aleph_\alpha = \aleph_\alpha. \aleph_\alpha \cdot \aleph_\alpha = \aleph_\alpha.
\] \]
\end{theorem} \end{theorem}
\begin{corollary} \begin{corollary}
For all $\alpha, \beta$ it is For all $\alpha, \beta$ it is
@ -116,13 +129,16 @@ so $|a| = \aleph_\beta$ for some $\beta \le |\alpha|$.
\end{corollary} \end{corollary}
\begin{proof} \begin{proof}
Wlog.~$\alpha \le \beta$. Wlog.~$\alpha \le \beta$.
Trivially $\aleph_\alpha \le \aleph_\beta$. \gist{%
It is also clear that Trivially $\aleph_\alpha \le \aleph_\beta$.
\[ It is also clear that
\aleph_{\beta} \le \aleph_\alpha + \aleph_{\beta} \le \aleph_\alpha \cdot \aleph_\beta \le \aleph_\beta \cdot \aleph_\beta = \aleph_\beta. \[
\] \aleph_{\beta} \le \aleph_\alpha + \aleph_{\beta} \le \aleph_\alpha \cdot \aleph_\beta \le \aleph_\beta \cdot \aleph_\beta = \aleph_\beta.
\]
}{Then $\aleph_{\beta} \le \aleph_\alpha + \aleph_{\beta} \le \aleph_\alpha \cdot \aleph_\beta \le \aleph_\beta \cdot \aleph_\beta = \aleph_\beta$.}
\end{proof} \end{proof}
\begin{refproof}{thm:hessenberg} \begin{refproof}{thm:hessenberg}
\gist{%
Define a well-order $<^\ast$ on $\OR \times \OR$ by setting Define a well-order $<^\ast$ on $\OR \times \OR$ by setting
\[ \[
(\alpha,\beta) <^\ast (\gamma,\delta) (\alpha,\beta) <^\ast (\gamma,\delta)
@ -143,7 +159,7 @@ so $|a| = \aleph_\beta$ for some $\beta \le |\alpha|$.
$\Gamma$ is called the \vocab{Gödel pairing function}. $\Gamma$ is called the \vocab{Gödel pairing function}.
\begin{claim} \begin{claim}
For all $\alpha$ it is For all $\alpha$ it is
$\ran(\Gamma\defon{\aleph_\alpha \times \aleph_\alpha})) = \aleph_\alpha$, $\ran(\Gamma\defon{\aleph_\alpha \times \aleph_\alpha}) = \aleph_\alpha$,
i.e. i.e.
\[ \[
\aleph_\alpha = \{\xi: \exists \eta, \eta' < \aleph_\alpha.~\xi = \Gamma((\eta,\eta'))\}. \aleph_\alpha = \{\xi: \exists \eta, \eta' < \aleph_\alpha.~\xi = \Gamma((\eta,\eta'))\}.
@ -173,7 +189,7 @@ so $|a| = \aleph_\beta$ for some $\beta \le |\alpha|$.
If $(\gamma,\delta) <^\ast (\eta, \eta')$, If $(\gamma,\delta) <^\ast (\eta, \eta')$,
then $\max \{\gamma,\delta\} \le \max \{\eta, \eta'\}$. then $\max \{\gamma,\delta\} \le \max \{\eta, \eta'\}$.
Say $\eta \le \eta' < \aleph_\alpha$ Say $\eta \le \eta' < \aleph_\alpha$
and let $\aleph_\alpha = |\eta'|$. and let $\aleph_\beta = |\eta'|$.
There is a surjection There is a surjection
\[f\colon \underbrace{(\eta +1)}_{ \le \aleph_\beta} \times \underbrace{(\eta' + 1)}_{\sim \aleph_\beta} \twoheadrightarrow \aleph_\alpha.\] \[f\colon \underbrace{(\eta +1)}_{ \le \aleph_\beta} \times \underbrace{(\eta' + 1)}_{\sim \aleph_\beta} \twoheadrightarrow \aleph_\alpha.\]
@ -181,15 +197,38 @@ so $|a| = \aleph_\beta$ for some $\beta \le |\alpha|$.
The inductive hypothesis then produces a surjection The inductive hypothesis then produces a surjection
$f^\ast\colon \aleph_\beta \to \aleph_\alpha \lightning$. $f^\ast\colon \aleph_\beta \to \aleph_\alpha \lightning$.
\end{subproof} \end{subproof}
}{
\begin{itemize}
\item Define wellorder $<^\ast \subseteq \OR \times \OR$,
$(\alpha,\beta) <^\ast (\gamma,\delta)$ iff
\begin{itemize}
\item $\max(\alpha,\beta) < \max(\gamma,\delta)$ or
\item $\max(\alpha,\beta) = \max(\gamma,\delta)$ and $\alpha < \gamma$ or
\item $\max(\alpha,\beta) = \max(\gamma,\delta)$ and $\alpha = \gamma$ and $\beta < \delta$.
\end{itemize}
\item Gödel pairing function $\Gamma : (\OR \times \OR, <^\ast) \xrightarrow{\cong} (\OR, <)$.
\item $\forall \alpha.~\ran(\Gamma\defon{\aleph_\alpha \times \aleph_\alpha}) = \aleph_\alpha$.
\begin{itemize}
\item Induction on $\alpha$.
\item Clearly $\aleph_\alpha \subseteq \ran(\Gamma\defon{\aleph_\alpha \times \aleph_\alpha})$
($\aleph_\alpha$ is a cardinal).
\item Suppose $\aleph_\alpha \subsetneq \ran(\Gamma\defon{\aleph_\alpha \times \aleph_\alpha})$,
We get a surjection $\aleph_\beta \xrightarrow{\text{induction}} \aleph_\beta \times \aleph_\beta \to \aleph_\alpha$
for some $\beta < \alpha$.
\end{itemize}
\end{itemize}
}
\end{refproof} \end{refproof}
\gist{%
However, exponentiation of cardinals is far from trivial: However, exponentiation of cardinals is far from trivial:
\begin{observe} \begin{observe}
$2^{\kappa} = |\cP(\kappa)|$, $2^{\kappa} = |\cP(\kappa)|$,
since ${}^{\kappa} \{0,1\} \leftrightarrow\cP(\kappa)$. since $\leftindex^{\kappa} \{0,1\} \leftrightarrow\cP(\kappa)$.
Hence by Cantor $2^{\kappa}\ge \kappa^+$. Hence by Cantor $2^{\kappa}\ge \kappa^+$.
\end{observe} \end{observe}
This is basically all we can say. This is basically all we can say.
}{}
The \vocab{continuum hypothesis} states that $2^{\aleph_0} = \aleph_1$. The \vocab{continuum hypothesis} states that $2^{\aleph_0} = \aleph_1$.

View file

@ -26,17 +26,20 @@ and
\beta^{\lambda} &\coloneqq & \sup_{\alpha < \lambda} \beta^{\alpha} &~ ~\text{for limit ordinals $\lambda$}. \beta^{\lambda} &\coloneqq & \sup_{\alpha < \lambda} \beta^{\alpha} &~ ~\text{for limit ordinals $\lambda$}.
\end{IEEEeqnarray*} \end{IEEEeqnarray*}
\gist{%
\begin{example} \begin{example}
\leavevmode \leavevmode
\begin{itemize} \begin{itemize}
\item $2+ 2 =4$, \item $2+ 2 =4$,
\item $196883 + 1 = 196884$,
\item $1 + \omega = \sup_{n < \omega} 1 + n = \omega \neq \omega +1$, \item $1 + \omega = \sup_{n < \omega} 1 + n = \omega \neq \omega +1$,
\item $2 \cdot \omega = \sup_{n < \omega} 2\cdot n = \omega$, \item $2 \cdot \omega = \sup_{n < \omega} 2\cdot n = \omega$,
\item $\omega \cdot 2 =\omega \cdot 1 + \omega = \omega + \omega$.. \item $\omega \cdot 2 =\omega \cdot 1 + \omega = \omega + \omega$.
\end{itemize} \end{itemize}
\end{example} \end{example}
}{}
\gist{%
\begin{warning} \begin{warning}
Cardinal arithmetic and ordinal arithmetic are very different! Cardinal arithmetic and ordinal arithmetic are very different!
The symbols are the same, but usually we will distinguish The symbols are the same, but usually we will distinguish
@ -46,6 +49,7 @@ and
\end{warning} \end{warning}
We will very rarely use ordinal arithmetic. We will very rarely use ordinal arithmetic.
}{}
\subsection{Cofinality} \subsection{Cofinality}
@ -100,7 +104,7 @@ We will very rarely use ordinal arithmetic.
\begin{itemize} \begin{itemize}
\item $\cf(\aleph_\omega) = \omega$. \item $\cf(\aleph_\omega) = \omega$.
In fact $\cf(\aleph_{\lambda}) \le \lambda$ In fact $\cf(\aleph_{\lambda}) \le \lambda$
for limit ordinals $\lambda$ for limit ordinals $\lambda \neq 0$
(consider $\alpha \mapsto \aleph_\alpha$). (consider $\alpha \mapsto \aleph_\alpha$).
\item $\cf(\aleph_{\omega + \omega}) = \omega$. \item $\cf(\aleph_{\omega + \omega}) = \omega$.
\end{itemize} \end{itemize}
@ -110,17 +114,21 @@ We will very rarely use ordinal arithmetic.
$\cf(\beta)$ is a cardinal. $\cf(\beta)$ is a cardinal.
\end{lemma} \end{lemma}
\begin{proof} \begin{proof}
\gist{%
Let $f\colon \alpha \to \beta$ be cofinal. Let $f\colon \alpha \to \beta$ be cofinal.
Then $\tilde{f}\colon |\alpha| \to \beta$, Then $\tilde{f}\colon |\alpha| \to \beta$,
the composition with $\alpha \leftrightarrow|\alpha|$ the composition with $\alpha \leftrightarrow|\alpha|$
is cofinal as well and $|\alpha| \le \alpha$. is cofinal as well and $|\alpha| \le \alpha$.
}{Trivial.}
\end{proof} \end{proof}
\gist{%
\begin{question} \begin{question}
How does one imagine ordinals with How does one imagine ordinals with
cofinality $> \omega$? cofinality $> \omega$?
\end{question} \end{question}
No idea. No idea.
}{}
\begin{definition} \begin{definition}
An ordinal $\beta$ is \vocab{regular} An ordinal $\beta$ is \vocab{regular}
@ -172,6 +180,7 @@ In particular, a regular ordinal is always a cardinal.
by \yaref{thm:hessenberg}. by \yaref{thm:hessenberg}.
\end{proof} \end{proof}
\gist{%
\begin{itemize} \begin{itemize}
\item $\aleph_0, \aleph_1, \aleph_2, \ldots$ are regular, \item $\aleph_0, \aleph_1, \aleph_2, \ldots$ are regular,
\item $\aleph_\omega$ is singular, \item $\aleph_\omega$ is singular,
@ -184,11 +193,13 @@ In particular, a regular ordinal is always a cardinal.
\item $\aleph_{\omega_1 + 1}, \ldots$ is regular, \item $\aleph_{\omega_1 + 1}, \ldots$ is regular,
\item $\aleph_{\omega_2}$ is singular. \item $\aleph_{\omega_2}$ is singular.
\end{itemize} \end{itemize}
}{}
\begin{question}[Hausdorff] \begin{question}[Hausdorff]
Is there a regular limit cardinal? Is there a regular limit cardinal?
\end{question} \end{question}
Maybe. This is independent of $\ZFC$. Maybe. This is independent of $\ZFC$,
cf.~\yaref{def:inaccessible}.
\begin{theorem}[Hausdorff] \begin{theorem}[Hausdorff]
@ -197,9 +208,10 @@ Maybe. This is independent of $\ZFC$.
\] \]
\end{theorem} \end{theorem}
\begin{proof} \begin{proof}
\gist{%
Recall that Recall that
\begin{IEEEeqnarray*}{rCl} \begin{IEEEeqnarray*}{rCl}
\aleph_{\alpha+1}^{\aleph_\beta} &=& |{}^{\aleph_\beta} \aleph_{\alpha+1}|. \aleph_{\alpha+1}^{\aleph_\beta} &=& |\leftindex^{\aleph_\beta} \aleph_{\alpha+1}|.
\end{IEEEeqnarray*} \end{IEEEeqnarray*}
\begin{itemize} \begin{itemize}
\item First case: $\beta \ge \alpha+1$. \item First case: $\beta \ge \alpha+1$.
@ -209,8 +221,8 @@ Maybe. This is independent of $\ZFC$.
\le \left( 2^{\aleph_{\beta}} \right)^{\aleph_\beta} \le \left( 2^{\aleph_{\beta}} \right)^{\aleph_\beta}
= 2^{\aleph_{\beta} \cdot \aleph_\beta} = 2^{\aleph_\beta} \le \aleph_{\alpha+1}^{\aleph_\beta}. = 2^{\aleph_{\beta} \cdot \aleph_\beta} = 2^{\aleph_\beta} \le \aleph_{\alpha+1}^{\aleph_\beta}.
\] \]
Also $\aleph_\alpha^{\aleph_{\beta} = 2^{\aleph_\beta}}$ Also $\aleph_\alpha^{\aleph_{\beta}} = 2^{\aleph_\beta}$
in this case, in this case (by the same argument),
so so
\[ \[
\aleph_{\alpha+1}^{\aleph_{\beta}} = 2^{\aleph_{\beta}} \aleph_{\alpha+1}^{\aleph_{\beta}} = 2^{\aleph_{\beta}}
@ -224,14 +236,35 @@ Maybe. This is independent of $\ZFC$.
is unbounded. is unbounded.
So So
\[ \[
{}^{\aleph_{\beta}}\aleph_{\alpha+1} = \bigcup_{\xi < \aleph_{\alpha+1}} {}^{\aleph_\beta} \xi \leftindex^{\aleph_{\beta}}\aleph_{\alpha+1} = \bigcup_{\xi < \aleph_{\alpha+1}} \leftindex^{\aleph_\beta} \xi
\] \]
for each $\xi < \aleph_{\alpha+1}$, $|\xi| \le \aleph_\alpha$, for each $\xi < \aleph_{\alpha+1}$, $|\xi| \le \aleph_\alpha$,
hence hence
\[ \[
|{}^{\aleph_{\beta}}\xi| \le \aleph_\alpha^{\aleph_\beta} |\leftindex^{\aleph_{\beta}}\xi| \le \aleph_\alpha^{\aleph_\beta}
\] \]
for each $\xi < \aleph_{\alpha+1}$. for each $\xi < \aleph_{\alpha+1}$.
Therefore, \[\aleph_{\alpha+1}^{\aleph_\beta} \le \aleph_{\alpha+1} \cdot \aleph_{\alpha}^{\aleph_{\beta}} \le \aleph_{\alpha+1}^{\aleph_\beta}.\] Therefore, \[\aleph_{\alpha+1}^{\aleph_\beta} \le \aleph_{\alpha+1} \cdot \aleph_{\alpha}^{\aleph_{\beta}} \le \aleph_{\alpha+1}^{\aleph_\beta}.\]
\end{itemize} \end{itemize}
}{%
$\ge$ is trivial.
\begin{itemize}
\item First case: $\beta \ge \alpha + 1$.
Note that $\gamma \le \beta \implies \aleph_{\gamma}^{\aleph_\beta} = 2^{\aleph_\beta}$,
so
\[
\aleph_{\alpha+1}^{\aleph_\beta} \overset{\alpha+1 \le \beta}{=}
2^{\aleph_\beta}
\overset{\alpha < \beta}{=} \aleph_\alpha^{\aleph_\beta}
\le \aleph_\alpha^{\aleph_\beta} \cdot \aleph_{\alpha+1}.
\]
\item Second case: $\beta < \alpha+1$:
\begin{itemize}
\item $\aleph_{\alpha+1}$ is regular, so all $f\colon \aleph_\beta \to \aleph_{\alpha+1}$ are bounded.
\item Thus $\leftindex^{\aleph_\beta}\aleph_{\alpha+1} = \bigcup_{\xi < \aleph_{\alpha+1}} \leftindex^{\aleph_\beta} \xi$ for all $\xi < \aleph_{\alpha+1}$.
\item So $\aleph_{\alpha+1}^{\aleph_\beta} \le \aleph_{\alpha+1} \aleph_\alpha^{\aleph_\beta}$.
\end{itemize}
\end{itemize}
}
\end{proof} \end{proof}

View file

@ -1,5 +1,5 @@
\lecture{13}{2023-11-30}{} \lecture{13}{2023-11-30}{}
\gist{%
\begin{remark}[``Constructive'' approach to $\omega_1$ ] \begin{remark}[``Constructive'' approach to $\omega_1$ ]
There are many well-orders on $\omega$. There are many well-orders on $\omega$.
Let $W$ be the set of all such well-orders. Let $W$ be the set of all such well-orders.
@ -41,7 +41,9 @@
Thus $\otp(\faktor{W}{\sim}, <) = \omega_1$. Thus $\otp(\faktor{W}{\sim}, <) = \omega_1$.
\todo{move this} \todo{move this}
\end{remark} \end{remark}
}{}
\gist{%
\begin{notation} \begin{notation}
Let $I \neq \emptyset$ Let $I \neq \emptyset$
and let $\{\kappa_i : i \in I\}$ and let $\{\kappa_i : i \in I\}$
@ -57,13 +59,13 @@
\] \]
where where
\[ \[
\bigtimes_{i \in I} A_i \coloneqq \{f : f \text{is a function with domain $I$ and $f(i) \in A_i$}\}. \bigtimes_{i \in I} A_i \coloneqq \{f : f \text{ is a function}, \dom(f) = I, \forall i.~f(i) \in A_i\}.
\] \]
\end{notation} \end{notation}
\begin{remark} \begin{remark}
\AxC is equivalent to $\forall i \in I.~A_i \neq \emptyset \implies \bigtimes_{i \in I} A_i \neq \emptyset$. \AxC is equivalent to $\forall i \in I.~A_i \neq \emptyset \implies \bigtimes_{i \in I} A_i \neq \emptyset$.
\end{remark} \end{remark}
}{}
\begin{theorem}[K\H{o}nig] \begin{theorem}[K\H{o}nig]
\yalabel{K\H{o}nig's Theorem}{K\H{o}nig}{thm:koenig} \yalabel{K\H{o}nig's Theorem}{K\H{o}nig}{thm:koenig}
Let $I \neq \emptyset$. Let $I \neq \emptyset$.
@ -78,6 +80,7 @@
\] \]
\end{theorem} \end{theorem}
\begin{proof} \begin{proof}
\gist{%
Consider a function $F\colon \bigcup_{i \in I} (\kappa_i \times \{i\}) \to \bigtimes_{i \in I}\lambda_i$. Consider a function $F\colon \bigcup_{i \in I} (\kappa_i \times \{i\}) \to \bigtimes_{i \in I}\lambda_i$.
We want to show that $F$ is not surjective. We want to show that $F$ is not surjective.
@ -92,6 +95,14 @@
be defined by $i \mapsto \xi_i$. be defined by $i \mapsto \xi_i$.
Then $f \not\in \ran(F)$. Then $f \not\in \ran(F)$.
}{%
\begin{itemize}
\item Consider $F\colon \bigcup_{i \in I}(\kappa_i \times \{i\}) \to \bigtimes_{i \in I} \lambda_i$. Want: $F$ is not surjective.
\item Let $\xi_i$ minimal such that $\underbrace{F((\eta,i))(i)}_{\in \lambda_i} \neq \xi$
for all $\eta < \kappa_i$.
\item $(i \mapsto \eta_i) \not\in \ran(F)$.
\end{itemize}
}
\end{proof} \end{proof}
\begin{corollary} \begin{corollary}
@ -99,6 +110,7 @@
it is $\cf(2^{\kappa}) > \kappa$. it is $\cf(2^{\kappa}) > \kappa$.
\end{corollary} \end{corollary}
\begin{proof} \begin{proof}
\gist{%
If $2^{\kappa}$ is a successor cardinal, If $2^{\kappa}$ is a successor cardinal,
then $\cf(2^{\kappa}) = 2^{\kappa} > \kappa$, then $\cf(2^{\kappa}) = 2^{\kappa} > \kappa$,
since successor cardinals are regular. since successor cardinals are regular.
@ -115,6 +127,19 @@
\sup \{\kappa_i : i < \kappa\} \le \sum_{i \in \kappa} \kappa_i < \prod_{i \in \kappa} \lambda_i = \left( 2^{\kappa} \right)^{\kappa} = 2^{\kappa \cdot \kappa} = 2^{\kappa} \sup \{\kappa_i : i < \kappa\} \le \sum_{i \in \kappa} \kappa_i < \prod_{i \in \kappa} \lambda_i = \left( 2^{\kappa} \right)^{\kappa} = 2^{\kappa \cdot \kappa} = 2^{\kappa}
\] \]
and $f$ is not cofinal. and $f$ is not cofinal.
}{%
\begin{itemize}
\item Trivial for successors ($\cf(2^{\kappa}) \overset{\text{regular}}{=} 2^{\kappa} > \kappa$).
\item Suppose $2^\kappa$ is a limit, $\exists f\colon \kappa \to 2^{\kappa}$ cofinal.
Wlog.~$f(i) \in \Card$.
But
\[
\sup \{f(i)) : i < \kappa\} \le \sum_{i \in \kappa} f(i)
\overset{\yaref{thm:koenig}}{<} \prod_{i \in \kappa} 2^{\kappa}
= (2^{\kappa})^{\kappa} = 2^{\kappa}. ~ ~\qedhere
\]
\end{itemize}
}
\end{proof} \end{proof}
\begin{fact} \begin{fact}

View file

@ -1,4 +1,5 @@
\lecture{14}{2023-12-04}{} \lecture{14}{2023-12-04}{}
\gist{%
\begin{abuse} \begin{abuse}
Sometimes we say club Sometimes we say club
instead of club in $\kappa$. instead of club in $\kappa$.
@ -17,6 +18,7 @@
is club in $\kappa$. is club in $\kappa$.
\end{itemize} \end{itemize}
\end{example} \end{example}
}{}
\begin{lemma} \begin{lemma}
\label{lem:clubintersection} \label{lem:clubintersection}
Let $\kappa$ be regular and uncountable. Let $\kappa$ be regular and uncountable.
@ -34,12 +36,12 @@
Let $C_{\beta} \coloneqq \{\xi : \xi > \beta\}$. Let $C_{\beta} \coloneqq \{\xi : \xi > \beta\}$.
Clearly this is club Clearly this is club
but $\bigcap_{\beta < \kappa} C_\beta = \emptyset$. but $\bigcap_{\beta < \kappa} C_\beta = \emptyset$.
\end{warning} \end{warning}
\begin{refproof}{lem:clubintersection} \begin{refproof}{lem:clubintersection}
\gist{%
First let $\alpha = 2$. First let $\alpha = 2$.
Let $C, D \subseteq \kappa$ Let $C, D \subseteq \kappa$
be a club. be club.
$C \cap D$ is trivially closed: $C \cap D$ is trivially closed:
Let $\beta < \kappa$. Suppose that $(C \cap D) \cap \beta$ Let $\beta < \kappa$. Suppose that $(C \cap D) \cap \beta$
@ -84,7 +86,17 @@
= \sup_{i < \omega} \gamma_{\alpha \cdot n + \beta + 1} \in \bigcap_{\beta < \alpha} C_\beta$, = \sup_{i < \omega} \gamma_{\alpha \cdot n + \beta + 1} \in \bigcap_{\beta < \alpha} C_\beta$,
where we have used that. where we have used that.
$\cf(\kappa) > \alpha \cdot \omega$. $\cf(\kappa) > \alpha \cdot \omega$.
}{%
\begin{itemize}
\item Trivially closed.
\item Recursively define $\langle \gamma_i : i \le \alpha \cdot \omega \rangle$, by
$\gamma_0 \coloneqq \gamma$,
\[\gamma_{\alpha \cdot n + \beta + 1} = \min C_{\beta} \setminus (\gamma_{\alpha \cdot n + \beta} + 1)\]
and $\sup$ at limits.
\item Then $\sup_{i < \alpha\cdot \omega} \gamma_i \in \bigcap_{\beta < \alpha} C_\beta$
(we used $\cf(\kappa) > \alpha\cdot \omega$).
\end{itemize}
}
\end{refproof} \end{refproof}
\begin{definition} \begin{definition}
@ -106,7 +118,9 @@
iff for all $\gamma < \alpha$ and $\{X_\beta : \beta < \gamma\} \subseteq F$ iff for all $\gamma < \alpha$ and $\{X_\beta : \beta < \gamma\} \subseteq F$
then $\bigcap \{X_\beta : \beta < \gamma\} \in F$. then $\bigcap \{X_\beta : \beta < \gamma\} \in F$.
\end{definition} \end{definition}
\gist{%
Intuitively, a filter is a collection of ``big'' subsets of $a$. Intuitively, a filter is a collection of ``big'' subsets of $a$.
}{}
\begin{definition} \begin{definition}
Let $\kappa$ be regular and uncountable. Let $\kappa$ be regular and uncountable.
@ -126,7 +140,7 @@ We have shown (assuming \AxC to choose contained clubs):
Clearly $\emptyset \not\in \cF_\kappa$, Clearly $\emptyset \not\in \cF_\kappa$,
$\kappa \in \cF_\kappa$, $\kappa \in \cF_\kappa$,
and $A \in \cF_{\kappa}, A \subseteq B \in \kappa \implies B \in \cF_\kappa$. and $A \in \cF_{\kappa}, A \subseteq B \in \kappa \implies B \in \cF_\kappa$.
In \autoref{lem:clubintersection} we are going to show that the intersection In \autoref{lem:clubintersection} showed that the intersection
of $< \kappa$ many clubs is club. of $< \kappa$ many clubs is club.
\end{proof} \end{proof}
@ -146,9 +160,11 @@ We have shown (assuming \AxC to choose contained clubs):
If $\langle C_{\beta} : \beta < \kappa \rangle$ If $\langle C_{\beta} : \beta < \kappa \rangle$
is a sequence of club subsets of $\kappa$, is a sequence of club subsets of $\kappa$,
then $\diagi_{\beta < \kappa} C_{\beta}$ then $\diagi_{\beta < \kappa} C_{\beta}$
contains a club. % TODO: contains or is? contains a club.
\end{lemma} \end{lemma}
\begin{proof} \begin{refproof}{lem:diagiclub}
% TODO THINK
\gist{
Let us fix $\langle C_{\beta} : \beta < \alpha \rangle$. Let us fix $\langle C_{\beta} : \beta < \alpha \rangle$.
Write $D_{\beta} \coloneqq \bigcap \{C_{\gamma} : \gamma \le \beta\} $ Write $D_{\beta} \coloneqq \bigcap \{C_{\gamma} : \gamma \le \beta\} $
for $\beta < \kappa$. for $\beta < \kappa$.
@ -192,7 +208,7 @@ We have shown (assuming \AxC to choose contained clubs):
\begin{subproof} \begin{subproof}
Fix $\gamma < \kappa$. Fix $\gamma < \kappa$.
We need to find $\delta > \gamma$ We need to find $\delta > \gamma$
with $\gamma \in \diagi_{\beta < \kappa} D_\beta$. with $\delta \in \diagi_{\beta < \kappa} D_\beta$.
Define $\langle \gamma_n : n < \omega \rangle$ Define $\langle \gamma_n : n < \omega \rangle$
as follows: as follows:
@ -212,20 +228,57 @@ We have shown (assuming \AxC to choose contained clubs):
for some $n < \omega$. for some $n < \omega$.
For $m \ge n$, $\gamma_{m+1} \in D_{\gamma_m} \subseteq D_{\gamma_n} \subseteq D_{\overline{\gamma}}$. For $m \ge n$, $\gamma_{m+1} \in D_{\gamma_m} \subseteq D_{\gamma_n} \subseteq D_{\overline{\gamma}}$.
So $D_{\overline{\gamma}} \cap \delta$ is unbounded So $D_{\overline{\gamma}} \cap \delta$ is unbounded
in $\gamma$, hence $\delta \in D_{\overline{\gamma}}$. in $\delta$, hence $\delta \in D_{\overline{\gamma}}$.
\end{subproof} \end{subproof}
\end{proof} }{%
\begin{itemize}
\item Fix $\langle C_\beta : \beta < \alpha \rangle$.
Set $D_{\beta} \coloneqq \bigcap_{\gamma \le \beta} D_{\gamma}$.
It suffices to analyze $D_{\beta}$.
\item $\diagi_{\beta < \kappa} D_{\beta}$ is closed in $\kappa$:
\begin{itemize}
\item Let $\gamma < \kappa$ such that $\left( \diagi_{\beta < \kappa} D_{\beta}\right) \cap \gamma$ unbounded in $\gamma$.
Want $\gamma \in \diagi_{\beta < \kappa} D_\beta$.
\item Let $\beta_0 < \gamma$. Want $\gamma \in D_{\beta_0}$.
\item $D_{\beta_0} \cap \gamma$ is unbounded in $\gamma$
($D_{\beta_0} \setminus \beta_0 \supseteq \diagi_{\beta < \kappa} D_{\beta} \setminus \beta_0$)
$\overset{D_{\beta_0} \text{ closed}}{\implies} \gamma \in D_{\beta_0}$.
\end{itemize}
\item $\diagi_{\beta < \kappa} D_\beta$ is unbounded in $\kappa$:
\begin{itemize}
\item Fix $\gamma < \kappa$. We need to find $\diagi_{\beta < \kappa} D_\beta \ni \delta > \gamma$.
\item Define $\langle \gamma_n : n < \omega \rangle$
by $\gamma_0 \coloneqq \gamma$,
$\gamma_{n+1} \coloneqq \min D_{\gamma_n} \setminus (\gamma_n + 1)$,
$\delta \coloneqq \sup_n \gamma_n \overset{\cf(\kappa) > \omega}{<} \kappa$
\item Want $\delta \in \diagi_{\beta < \kappa} D_\beta$,
i.e.~$\forall \epsilon < \delta.~\delta\in D_\epsilon$.
If $\epsilon < \delta$, then $\epsilon \le \gamma_n$
for $n$ large enough,
so $\gamma_{m+1} \in D_{\gamma_m} \subseteq D_{\gamma_n} \subseteq D_\epsilon$
for $m \ge n$.
Thus $\sup(D_\epsilon \cap \delta) = \delta$
$\overset{D_\epsilon \text{ closed}}{\implies} \delta \in D_{\epsilon}$.
\end{itemize}
\end{itemize}
}
\end{refproof}
\begin{remark}+ \begin{remark}+
$\diagi_{\beta < \kappa} D_{\beta}$ actually $\diagi_{\beta < \kappa} C_{\beta}$ actually
\emph{is} a club: \emph{is} a club:
It suffices to show that $\diagi_{\beta < \kappa} D_\beta$ is closed. It suffices to show that $\diagi_{\beta < \kappa} C_\beta$ is closed.
Let $\lambda < \kappa$ be a limit ordinal. This can be shown in the same way as for $\diagi_{\beta < \kappa} D_\beta$.
Suppose that $\lambda \not\in \diagi_{\beta < \kappa} D_\beta$. % Let $\lambda < \kappa$ be a limit ordinal.
Then there exists $\alpha < \lambda$ such that % Suppose that $\lambda \not\in \diagi_{\beta < \kappa} D_\beta$.
$\lambda \not\in D_\alpha$. % Then there exists $\alpha < \lambda$ such that
Since $D_\alpha$ is closed, % $\lambda \not\in D_\alpha$.
we get $\sup(D_{\alpha} \cap \lambda) < \lambda$. % Since $D_\alpha$ is closed,
In particular $\sup (\lambda \cap\diagi_{\beta < \kappa} D_{\beta}) \le \alpha \cup \sup(D_\alpha \cap \lambda) < \lambda$. % we get $\sup(D_{\alpha} \cap \lambda) < \lambda$.
% In particular $\sup (\lambda \cap\diagi_{\beta < \kappa} D_{\beta}) \le \alpha \cup \sup(D_\alpha \cap \lambda) < \lambda$.
\end{remark} \end{remark}
\begin{definition} \begin{definition}

View file

@ -28,6 +28,7 @@
$f(\alpha) = \nu$ for all $\alpha \in T$. $f(\alpha) = \nu$ for all $\alpha \in T$.
\end{theorem} \end{theorem}
\begin{proof} \begin{proof}
\gist{%
Let $S, f$ be given. Let $S, f$ be given.
For $\nu < \kappa$ set $S_\nu \coloneqq \{\alpha \in S : f(\alpha) = \nu\}$. % f^{-1}(\nu)$. For $\nu < \kappa$ set $S_\nu \coloneqq \{\alpha \in S : f(\alpha) = \nu\}$. % f^{-1}(\nu)$.
We aim to show that one of the $S_\nu$ is stationary. We aim to show that one of the $S_\nu$ is stationary.
@ -41,6 +42,16 @@
Hence $f(\alpha) \neq \nu$ for all $\nu < \alpha$, Hence $f(\alpha) \neq \nu$ for all $\nu < \alpha$,
so $f(\alpha) \ge \alpha$. so $f(\alpha) \ge \alpha$.
But $f$ is regressive $\lightning$ But $f$ is regressive $\lightning$
}{%
\begin{itemize}
\item For $\nu < \kappa$ set $S_\nu \coloneqq \{\alpha \in S : f(\alpha) = \nu\}$.
\item Suppose none of the $S_\nu$ is stationary,
i.e.~ $\forall \nu < \kappa.~\exists C_\nu \text{ club}.~C_\nu \cap S_\nu = \neq$.
\item $\diagi_{\nu < \alpha} C_\nu$ is club.
\item Pick $\alpha \in C \cap S$.
But then $\forall \nu < \alpha.~\alpha \in C_\nu$, i.e.~$f(\alpha) \ge \alpha$.
\end{itemize}
}
\end{proof} \end{proof}
\subsection{Some model theory and a second proof of Fodor's Theorem} \subsection{Some model theory and a second proof of Fodor's Theorem}
@ -70,7 +81,7 @@ Recall the following:
over $V_\theta$ for $\phi$ over $V_\theta$ for $\phi$
is a function is a function
\[ \[
f\colon {}^k V_\theta \to V_\theta, f\colon \leftindex^k V_\theta \to V_\theta,
\] \]
where $k$ is the number of free variables of where $k$ is the number of free variables of
$\exists v.~\phi$ $\exists v.~\phi$
@ -91,9 +102,10 @@ to be an elementary substructure of $V_\theta$.
(where $k$ is the number of free variables of $\exists v.~\phi$) (where $k$ is the number of free variables of $\exists v.~\phi$)
$f_\phi(x_1,\ldots,x_k) \in X$, $f_\phi(x_1,\ldots,x_k) \in X$,
then $X \prec V_{\theta}$. then $X \prec V_{\theta}$.
\end{lemma} \end{lemma}
% TODO ANKI-MARKER
Let's do a second proof of \yaref{thm:fodor}. Let's do a second proof of \yaref{thm:fodor}.
\begin{refproof}{thm:fodor} \begin{refproof}{thm:fodor}
Fix $\theta > \kappa$ and look at $V_{\theta}$. Fix $\theta > \kappa$ and look at $V_{\theta}$.

View file

@ -42,6 +42,7 @@ and $\emptyset \not\in F, \kappa \in F$.
either $X \in F$ or $\kappa \setminus X \in F$. either $X \in F$ or $\kappa \setminus X \in F$.
\end{definition} \end{definition}
\gist{%
\begin{example} \begin{example}
Examples of filters: Examples of filters:
\begin{enumerate}[(a)] \begin{enumerate}[(a)]
@ -55,6 +56,7 @@ and $\emptyset \not\in F, \kappa \in F$.
Then $\cF_\kappa \coloneqq \{X \subseteq \kappa: \exists C \subseteq \kappa \text{ club in $\kappa$}. C \subseteq X\}$. Then $\cF_\kappa \coloneqq \{X \subseteq \kappa: \exists C \subseteq \kappa \text{ club in $\kappa$}. C \subseteq X\}$.
\end{enumerate} \end{enumerate}
\end{example} \end{example}
}{Let $\cF_\kappa \coloneqq \{X \subseteq \kappa : \exists C \subseteq \kappa \text{ club in } \kappa\}$.}
\begin{question} \begin{question}
Is $\cF_\kappa$ an ultrafilter? Is $\cF_\kappa$ an ultrafilter?
\end{question} \end{question}

View file

@ -1,6 +1,7 @@
\lecture{18}{2023-12-18}{Large cardinals} \lecture{18}{2023-12-18}{Large cardinals}
\begin{definition} \begin{definition}
\label{def:inaccessible}
\begin{itemize} \begin{itemize}
\item A cardinal $\kappa$ is called \vocab{weakly inaccessible} \item A cardinal $\kappa$ is called \vocab{weakly inaccessible}
iff $\kappa$ is uncountable,\footnote{dropping this we would get that $\aleph_0$ is inaccessible} iff $\kappa$ is uncountable,\footnote{dropping this we would get that $\aleph_0$ is inaccessible}
@ -19,7 +20,7 @@
\begin{theorem} \begin{theorem}
If $\kappa$ is inaccessible, If $\kappa$ is inaccessible,
then $V_\kappa \models \ZFC$.\footnote{More formally $(V_{\kappa}, \in ) \models\ZFC$.} then $V_\kappa \models \ZFC$.\footnote{More formally $(V_{\kappa}, \in\defon{V_\kappa}) \models\ZFC$.}
\end{theorem} \end{theorem}
\begin{proof} \begin{proof}
Since $\kappa$ is regular, \AxRep works. Since $\kappa$ is regular, \AxRep works.
@ -145,11 +146,11 @@
1. $\implies$ 2. 1. $\implies$ 2.
Fix $U$. Fix $U$.
Let ${}^{\kappa}V$ be the class of all function from $\kappa$ to $V$. Let $\leftindex^{\kappa}V$ be the class of all function from $\kappa$ to $V$.
For $f,g \in {}^{\kappa}V$ define For $f,g \in \leftindex^{\kappa}V$ define
$f \sim g :\iff \{\xi < \kappa : f(\xi) = g(\xi)\} \in U$. $f \sim g :\iff \{\xi < \kappa : f(\xi) = g(\xi)\} \in U$.
This is an equivalence relation since $U$ is a filter. This is an equivalence relation since $U$ is a filter.
Write $[f] = \{g \in {}^\kappa V : g \sim ~ f \land g \in V_\alpha \text{ for the least $\alpha$ such that there is some $h \in V_\alpha$ with $h \sim f$}\}$.% Write $[f] = \{g \in \leftindex^\kappa V : g \sim ~ f \land g \in V_\alpha \text{ for the least $\alpha$ such that there is some $h \in V_\alpha$ with $h \sim f$}\}$.%
\footnote{This is know as \vocab{Scott's Trick}. \footnote{This is know as \vocab{Scott's Trick}.
Note that by defining equivalence classes Note that by defining equivalence classes
in the usual way (i.e.~without this trick), in the usual way (i.e.~without this trick),
@ -164,7 +165,7 @@
This is independent of the choice of the representatives, This is independent of the choice of the representatives,
so it is well-defined. so it is well-defined.
Now write $\cF = \{[f] : f \in {}^{\kappa}V\}$ Now write $\cF = \{[f] : f \in \leftindex^{\kappa}V\}$
and look at $(\cF, \tilde{\in})$. and look at $(\cF, \tilde{\in})$.
The key to the construction is \yaref{thm:los} (see below). The key to the construction is \yaref{thm:los} (see below).
@ -188,7 +189,7 @@ Then
Let us show that $(\cF, \tilde{\in })$ Let us show that $(\cF, \tilde{\in })$
is well-founded. is well-founded.
Otherwise there is $\langle f_n : n < \omega \rangle$ Otherwise there is $\langle f_n : n < \omega \rangle$
such that $f_n \in {}^\kappa V$ such that $f_n \in \leftindex^\kappa V$
and $[f_{n+1}] \tilde{\in } [f_n]$ for all $n < \omega$. and $[f_{n+1}] \tilde{\in } [f_n]$ for all $n < \omega$.
Then $X_n \coloneqq \{\xi < \kappa : f_{n+1}(\xi) \in f_n(\xi)\} \in U$, Then $X_n \coloneqq \{\xi < \kappa : f_{n+1}(\xi) \in f_n(\xi)\} \in U$,
@ -228,7 +229,7 @@ So $j(\alpha) \le \alpha$.
\begin{theorem}[\L o\'s] \begin{theorem}[\L o\'s]
\yalabel{\L o\'s's Theorem}{\L o\'s}{thm:los} \yalabel{\L o\'s's Theorem}{\L o\'s}{thm:los}
For all formulae $\phi$ and for all $f_1, \ldots, f_k \in {}^{\kappa} V$, For all formulae $\phi$ and for all $f_1, \ldots, f_k \in \leftindex^{\kappa} V$,
\[ \[
(\cF, \tilde{\in}) \models \phi([f_1], \ldots, [f_k]) (\cF, \tilde{\in}) \models \phi([f_1], \ldots, [f_k])
\iff \{\xi < \kappa : (V, \in ) \models \phi(f_1(\xi), \ldots, f_k(\xi))\} \in U. \iff \{\xi < \kappa : (V, \in ) \models \phi(f_1(\xi), \ldots, f_k(\xi))\} \in U.

View file

@ -24,6 +24,7 @@
\usepackage{multirow} \usepackage{multirow}
\usepackage{float} \usepackage{float}
\usepackage{scalerel} \usepackage{scalerel}
\usepackage{leftindex}
%\usepackage{algorithmicx} %\usepackage{algorithmicx}
\newcounter{subsubsubsection}[subsubsection] \newcounter{subsubsubsection}[subsubsection]