silver gist
Some checks failed
Build latex and deploy / checkout (push) Failing after 17m37s

This commit is contained in:
Josia Pietsch 2024-02-14 18:44:32 +01:00
parent 515ff64ac6
commit cac1563244
Signed by: josia
GPG key ID: E70B571D66986A2D
3 changed files with 17 additions and 6 deletions

View file

@ -12,7 +12,7 @@ jobs:
- name: Prepare pages - name: Prepare pages
run: | run: |
mkdir public mkdir public
mv build/logic2.pdf build/logic2.log README.md public mv build/*.pdf build/*.log README.md public
- name: Deploy to pages - name: Deploy to pages
uses: actions/pages@v1 uses: actions/pages@v1
with: with:

View file

@ -75,7 +75,7 @@ We often write $\kappa, \lambda, \ldots$ for cardinals.
\end{itemize} \end{itemize}
} }
\end{proof} \end{proof}
We may now use the \yaref{lem:recursion} We may now use the \yaref{thm:recursion}
to define a sequence $\langle \aleph_\alpha : \alpha \in \OR \rangle$ to define a sequence $\langle \aleph_\alpha : \alpha \in \OR \rangle$
with the following properties: with the following properties:
\begin{IEEEeqnarray*}{rCl} \begin{IEEEeqnarray*}{rCl}

View file

@ -236,8 +236,7 @@ We will only proof
\item $X \le Y :\iff \{\alpha < \omega_1 : f_X(\alpha) \le f_Y(\alpha)\}$ stationary. \item $X \le Y :\iff \{\alpha < \omega_1 : f_X(\alpha) \le f_Y(\alpha)\}$ stationary.
\item (2) $X\le Y \lor Y \le X$: \item (2) $X\le Y \lor Y \le X$:
Suppose $X \not\le Y, Y \not\le X$. Choose witnessing clubs $C, D$. Suppose $X \not\le Y, Y \not\le X$. Choose witnessing clubs $C, D$.
$C \cap D$ is club, but then $f_X(\alpha) \le f_Y(\alpha)$ or $C \cap D$ is club, so $C\cap D \ni \alpha \implies f_X(\alpha) \substack{\nleq\\\ngeq} f_Y(\alpha) \lightning$
$f_X(\alpha) \ge f_Y(\alpha)$ for $\alpha \in C \cap D$.
\item (3) $X \subseteq \aleph_{ \omega_1}$, then $|\underbrace{\{Y \subseteq \aleph_{ \omega_1} : Y \le X\}}_{A}| \le \aleph_{ \omega_1}$ \item (3) $X \subseteq \aleph_{ \omega_1}$, then $|\underbrace{\{Y \subseteq \aleph_{ \omega_1} : Y \le X\}}_{A}| \le \aleph_{ \omega_1}$
\begin{itemize} \begin{itemize}
\item Suppose $|A| \ge \aleph_{ \omega_1 + 1}$. \item Suppose $|A| \ge \aleph_{ \omega_1 + 1}$.
@ -245,9 +244,21 @@ We will only proof
$2^{\aleph_1} = \aleph_2 \implies$ at most $\aleph_2$ such $S_Y$. $2^{\aleph_1} = \aleph_2 \implies$ at most $\aleph_2$ such $S_Y$.
\item If $\forall S \in \cP( \omega_1).~ |\underbrace{\{Y \in A : S_Y = S\}}_{A_S}| < \aleph_{ \omega_1 + 1}$, \item If $\forall S \in \cP( \omega_1).~ |\underbrace{\{Y \in A : S_Y = S\}}_{A_S}| < \aleph_{ \omega_1 + 1}$,
then $|A| \le \aleph_2 \cdot <\aleph_{ \omega_1 + 1}$ $\lightning$ $\aleph_{ \omega_1 + 1}$ regular. then $|A| \le \aleph_2 \cdot <\aleph_{ \omega_1 + 1}$ $\lightning$ $\aleph_{ \omega_1 + 1}$ regular.
\item So $\exists S \in \omega_1.~|A_S| = \aleph_{ \omega_1 + 1 + 1}$. \item So $\exists S \in \omega_1.~|A_S| = \aleph_{ \omega_1 + 1}$.
% TODO TODO TODO hier weiter! \item Fix surjection $\langle g_\alpha : \aleph_\alpha \twoheadrightarrow f_X(\alpha) + 1 : \alpha \in S \rangle$.
($f_Y(\alpha) \le f_X(\alpha) < \aleph_{\alpha+1}$)
\item $\forall Y \in A_S$ define $\overline{f}_Y \colon S \to \aleph_{ \omega_1}, \alpha \mapsto \min \{\xi : g_\alpha(\xi) = f_Y(\alpha)\}$.
\item $S^\ast$ ($S \cap$ limit ordinals) is stationary.
\item $\forall Y \in A$ define $h_Y\colon S^\ast \to \omega_1, \alpha \mapsto \min \{\beta < \alpha : \overline{f}_Y(\alpha) < \aleph_\beta\}$.
\item Apply \yaref{thm:fodor} to $h_Y, S^\ast$ to get $T_Y \subseteq S^\ast$ stationary with $h_Y\defon{T_Y}$ constant.
\item $\exists T.~|\underbrace{\{Y \in A_S : T_Y = T\}}_{A_{S,T}}| = \aleph_{ \omega_1 + 1}$.
\item Let $\{\beta\} = g_Y''T$, i.e.~$\overline{f}_Y(\alpha) < \aleph_{\beta}$ for $Y\in A_{S,T}, \alpha \in T$.
\item $\leftindex^T \aleph_\beta \le 2^{\aleph_\beta \cdot \aleph_1} = \aleph_{\beta+1} \aleph_2 < \aleph_{ \omega_1}$.
\item $\exists \tilde{f}\colon T \to \aleph_\beta .~ |\underbrace{\{Y \in A_{S,T} : \overline{f}_Y\defon{T} = \tilde{f}\} }_{A_{S,T,\tilde{f}}}| = \aleph_{ \omega_1 + 1}$.
\item $Y,Y' \in A_{S,T,\tilde{f}} \implies \forall \alpha \in T.~f_Y(\alpha) = f_{Y'}\left( \alpha \right) \overset{T \text{ unbounded}}{\implies} Y = Y'$
Thus $|A_{S,T, \tilde{f}} | \le 1 \lightning$.
\end{itemize} \end{itemize}
\item Define sequence $\langle X_i : i < \aleph_{ \omega_1 + 1} \rangle$ \item Define sequence $\langle X_i : i < \aleph_{ \omega_1 + 1} \rangle$
of subsets of $\aleph_{\omega_1}$: of subsets of $\aleph_{\omega_1}$:
\begin{itemize} \begin{itemize}