This commit is contained in:
parent
66d38de1ea
commit
ca24c68790
4 changed files with 55 additions and 2 deletions
|
@ -122,6 +122,13 @@ We have shown (assuming \AxC to choose contained clubs):
|
||||||
If $\kappa$ is regular and uncountable.
|
If $\kappa$ is regular and uncountable.
|
||||||
Then $\cF_\kappa$ is a $< \kappa$-closed filter.
|
Then $\cF_\kappa$ is a $< \kappa$-closed filter.
|
||||||
\end{theorem}
|
\end{theorem}
|
||||||
|
\begin{proof}
|
||||||
|
Clearly $\emptyset \not\in \cF_\kappa$,
|
||||||
|
$\kappa \in \cF_\kappa$,
|
||||||
|
and $A \in \cF_{\kappa}, A \subseteq B \in \kappa \implies B \in \cF_\kappa$.
|
||||||
|
In \autoref{lem:clubintersection} we are going to show that the intersection
|
||||||
|
of $< \kappa$ many clubs is club.
|
||||||
|
\end{proof}
|
||||||
|
|
||||||
\begin{definition}
|
\begin{definition}
|
||||||
Let $\langle A_\beta : \beta < \alpha \rangle$
|
Let $\langle A_\beta : \beta < \alpha \rangle$
|
||||||
|
@ -208,6 +215,18 @@ We have shown (assuming \AxC to choose contained clubs):
|
||||||
in $\gamma$, hence $\delta \in D_{\overline{\gamma}}$.
|
in $\gamma$, hence $\delta \in D_{\overline{\gamma}}$.
|
||||||
\end{subproof}
|
\end{subproof}
|
||||||
\end{proof}
|
\end{proof}
|
||||||
|
\begin{remark}+
|
||||||
|
$\diagi_{\beta < \kappa} D_{\beta}$ actually
|
||||||
|
\emph{is} a club:
|
||||||
|
It suffices to show that $\diagi_{\beta < \kappa} D_\beta$ is closed.
|
||||||
|
Let $\lambda < \kappa$ be a limit ordinal.
|
||||||
|
Suppose that $\lambda \not\in \diagi_{\beta < \kappa} D_\beta$.
|
||||||
|
Then there exists $\alpha < \lambda$ such that
|
||||||
|
$\lambda \not\in D_\alpha$.
|
||||||
|
Since $D_\alpha$ is closed,
|
||||||
|
we get $\sup(D_{\alpha} \cap \lambda) < \lambda$.
|
||||||
|
In particular $\sup (\lambda \cap\diagi_{\beta < \kappa} D_{\beta}) \le \max (\alpha ,\sup(D_\alpha \cap \lambda) < \lambda$.
|
||||||
|
\end{remark}
|
||||||
|
|
||||||
\begin{definition}
|
\begin{definition}
|
||||||
Let $\kappa$ be regular and uncountable.
|
Let $\kappa$ be regular and uncountable.
|
||||||
|
|
|
@ -35,7 +35,7 @@
|
||||||
Then for every $\nu$ there exists a club $C_\nu$
|
Then for every $\nu$ there exists a club $C_\nu$
|
||||||
such that $S_\nu \cap C_\nu = \emptyset$.\footnote{Here we use \AxC to choose the $C_\nu$ uniformly.}
|
such that $S_\nu \cap C_\nu = \emptyset$.\footnote{Here we use \AxC to choose the $C_\nu$ uniformly.}
|
||||||
Let $C = \diagi_{\nu < \alpha} C_\nu$.
|
Let $C = \diagi_{\nu < \alpha} C_\nu$.
|
||||||
By \yaref{lem:diagiclub} $C$ is a club.\todo{Show that it \emph{is} a club not just contains one}
|
By \yaref{lem:diagiclub} $C$ is a club.
|
||||||
So we may pick some $\alpha \in C \cap S$.
|
So we may pick some $\alpha \in C \cap S$.
|
||||||
In particular $\alpha \in C_\nu$ for all $\nu < \alpha$.
|
In particular $\alpha \in C_\nu$ for all $\nu < \alpha$.
|
||||||
Hence $f(\alpha) \neq \nu$ for all $\nu < \alpha$,
|
Hence $f(\alpha) \neq \nu$ for all $\nu < \alpha$,
|
||||||
|
|
|
@ -216,7 +216,7 @@ Trivially, if $\kappa \le \lambda$ then $2^{\kappa} \le 2^{\lambda}$.
|
||||||
This is in some sense the only thing we can prove about successor cardinals.
|
This is in some sense the only thing we can prove about successor cardinals.
|
||||||
However we can say something about singular cardinals:
|
However we can say something about singular cardinals:
|
||||||
\begin{theorem}[Silver]
|
\begin{theorem}[Silver]
|
||||||
\yaref{Silver's Theorem}{Silver}{thm:silver}
|
\yalabel{Silver's Theorem}{Silver}{thm:silver}
|
||||||
|
|
||||||
Let $\kappa$ be a singular cardinal of uncountable cofinality.
|
Let $\kappa$ be a singular cardinal of uncountable cofinality.
|
||||||
Assume that $2^{\lambda} = \lambda^+$ for all (infinite)
|
Assume that $2^{\lambda} = \lambda^+$ for all (infinite)
|
||||||
|
|
34
inputs/tutorial_2024-01-17.tex
Normal file
34
inputs/tutorial_2024-01-17.tex
Normal file
|
@ -0,0 +1,34 @@
|
||||||
|
\tutorial{}{2024-01-17}{}
|
||||||
|
|
||||||
|
\subsection{Sheet 9}
|
||||||
|
|
||||||
|
\nr 1
|
||||||
|
|
||||||
|
Let $\kappa$ be strongly inaccessible.
|
||||||
|
Then $(V_{\kappa}, \in \defon_{V_\kappa}) \models\ZFC$:
|
||||||
|
|
||||||
|
Most axioms are trivial.
|
||||||
|
|
||||||
|
\begin{itemize}
|
||||||
|
\item \AxUnion: Let $A \in V_{\kappa}$.
|
||||||
|
Then $\rank(x) < \kappa$ for all $x \in A$.
|
||||||
|
Since $\kappa$ is regular, we get
|
||||||
|
$\bigcup A \in V_{\kappa}$.
|
||||||
|
\item \AxPower: This holds since $\kappa$ is strongly inaccessible.
|
||||||
|
\item \AxRep: If $A \in V_{\kappa}$ and $f\colon A \to V_\kappa$
|
||||||
|
is definable over $V_\kappa$,
|
||||||
|
then $f'' A = \{f(a) : a \in A\}$ has bounded rank below $\kappa$.
|
||||||
|
\end{itemize}
|
||||||
|
|
||||||
|
|
||||||
|
|
||||||
|
\subsection{Exercise during tutorial}
|
||||||
|
|
||||||
|
|
||||||
|
Let $\kappa$ be uncountable and regular
|
||||||
|
Then the club filter $\cF_{\kappa}$ is $< \kappa$-closed.
|
||||||
|
|
||||||
|
|
||||||
|
|
||||||
|
|
||||||
|
|
Loading…
Reference in a new issue