some small changes
Some checks failed
Build latex and deploy / checkout (push) Failing after 13m45s

This commit is contained in:
Josia Pietsch 2024-02-11 02:43:20 +01:00
parent 3faf497be7
commit b1b2a5974d
Signed by: josia
GPG key ID: E70B571D66986A2D
7 changed files with 71 additions and 26 deletions

View file

@ -1,6 +1,6 @@
\lecture{01}{2023-10-16}{} \lecture{01}{2023-10-16}{}
\gist{%
Literature \paragraph{Literature}
\begin{itemize} \begin{itemize}
\item Schindler, Set theory \item Schindler, Set theory
@ -20,6 +20,7 @@ Literature
\item Independence of $\CH$. \item Independence of $\CH$.
\end{itemize} \end{itemize}
\end{itemize} \end{itemize}
}{}
\section{Naive set theory} \section{Naive set theory}

View file

@ -6,6 +6,7 @@ Applications of induction and recursion:
such that $x \in t$. such that $x \in t$.
\end{fact} \end{fact}
\begin{proof} \begin{proof}
\gist{%
Take $R = \in $. Take $R = \in $.
We want a function $F$ with domain $\omega$ We want a function $F$ with domain $\omega$
such that $F(0) = \{x\}$ such that $F(0) = \{x\}$
@ -27,16 +28,27 @@ Applications of induction and recursion:
\begin{IEEEeqnarray*}{rCl} \begin{IEEEeqnarray*}{rCl}
F(0) &=& \{x\},\\ F(0) &=& \{x\},\\
F(n+1) &=& \bigcup\bigcup \ran(F\defon{n+1})\\ F(n+1) &=& \bigcup\bigcup \ran(F\defon{n+1})\\
&=& \bigcup \bigcup \{\{x\}, x, \bigcup x, \ldots, \underbrace{\bigcup^{n-1} x}_{F(n)}\} &=& \bigcup \bigcup \{\{x\}, x, \bigcup x, \ldots, \underbrace{\bigcup\nolimits^{n-1} x}_{F(n)}\}
= \bigcup F(n), = \bigcup F(n),
\end{IEEEeqnarray*} \end{IEEEeqnarray*}
i.e.~$F(n+1) = \bigcup F(n)$. i.e.~$F(n+1) = \bigcup F(n)$.
}{%
\begin{itemize}
\item Use recursion ($\in $) to define $F\colon \omega \to V$
such that
\[
F(0) = \{x\}, F(n+1) = \bigcup F(n).
\]
\item $\{x\} \cup \bigcup \ran(F)$ is as desired.
\end{itemize}
}
\end{proof} \end{proof}
\gist{%
\begin{notation} \begin{notation}
Let $\OR$ denote the class of all ordinals Let $\OR$ denote the class of all ordinals
and $V$ the class of all sets. and $V$ the class of all sets.
\end{notation} \end{notation}
}{}
\begin{lemma} \begin{lemma}
There is a function $F\colon \OR \to V$ There is a function $F\colon \OR \to V$
such that $F(\alpha) = \bigcup \{\cP(F(\beta)): \beta < \alpha\}$. such that $F(\alpha) = \bigcup \{\cP(F(\beta)): \beta < \alpha\}$.
@ -65,7 +77,7 @@ Applications of induction and recursion:
\end{enumerate} \end{enumerate}
\end{proof} \end{proof}
\begin{notation} \begin{notation}
Usually, one write $V_\alpha$ for $F(\alpha)$. Usually, one writes $V_\alpha$ for $F(\alpha)$.
They are called the \vocab{rank initial segments} of $V$. They are called the \vocab{rank initial segments} of $V$.
\end{notation} \end{notation}
\begin{lemma} \begin{lemma}

View file

@ -52,15 +52,23 @@ We will very rarely use ordinal arithmetic.
\begin{definition} \begin{definition}
Let $\alpha$, $\beta$ be ordinals. Let $\alpha$, $\beta$ be ordinals.
We say that $f\colon \alpha \to \beta$ is \vocab{cofinal} We say that $f\colon \alpha \to \beta$ is \vocab{cofinal}
iff for all $\xi < \beta$, there is some $\eta < \alpha$ iff
such that $f(\eta) \ge \xi$. \gist{%
for all $\xi < \beta$, there is some $\eta < \alpha$
such that $f(\eta) \ge \xi$.%
}{%
\[
\forall \xi < \beta.~\exists \eta < \alpha.~f(\eta) \ge \xi.
\]
}
\end{definition} \end{definition}
\gist{%
\begin{remark} \begin{remark}
If $\beta$ is a limit ordinal, If $\beta$ is a limit ordinal,
this is equivalent to this is equivalent to
\[ \[
\forall \xi < \beta .~\exists \eta \alpha.~f(\eta) > \xi. \forall \xi < \beta .~\exists \eta < \alpha.~f(\eta) > \xi.
\] \]
\end{remark} \end{remark}
\begin{example} \begin{example}
\begin{enumerate}[(a)] \begin{enumerate}[(a)]
@ -79,7 +87,7 @@ We will very rarely use ordinal arithmetic.
is cofinal. is cofinal.
\end{enumerate} \end{enumerate}
\end{example} \end{example}
}{}
\begin{definition} \begin{definition}
Let $\beta$ be an ordinal. Let $\beta$ be an ordinal.
The \vocab{cofinality} of $\beta$, The \vocab{cofinality} of $\beta$,
@ -87,7 +95,7 @@ We will very rarely use ordinal arithmetic.
is the least ordinal $\alpha$ is the least ordinal $\alpha$
such that there exists a cofinal such that there exists a cofinal
$f\colon \alpha \to \beta$. $f\colon \alpha \to \beta$.
\end{definition}k \end{definition}
\begin{example} \begin{example}
\begin{itemize} \begin{itemize}
\item $\cf(\aleph_\omega) = \omega$. \item $\cf(\aleph_\omega) = \omega$.
@ -139,7 +147,7 @@ In particular, a regular ordinal is always a cardinal.
Clearly this is cofinal. Clearly this is cofinal.
\end{proof} \end{proof}
\begin{warning} \begin{warning}
Note that in general, a composition of cofinal map Note that in general, a composition of cofinal maps
is not necessarily cofinal. is not necessarily cofinal.
\end{warning} \end{warning}

14
jrpie-gist.sty Normal file
View file

@ -0,0 +1,14 @@
\NeedsTeXFormat{LaTeX2e}
\ProvidesPackage{jrpie-gist}[2023/01/22 - gist version for lecture notes]
% TODO gist info
% TODO link to long version (provide link to main document)
% TODO \phantomsection to cross link
\newcommand{\gist}[2]{%
\ifcsname EnableGist\endcsname%
#2%
\else%
#1%
\fi%
}

View file

@ -9,6 +9,7 @@
\usepackage{mkessler-code} \usepackage{mkessler-code}
\usepackage{jrpie-math} \usepackage{jrpie-math}
\usepackage{jrpie-yaref} \usepackage{jrpie-yaref}
\usepackage{jrpie-gist}
\usepackage[normalem]{ulem} \usepackage[normalem]{ulem}
\usepackage{pdflscape} \usepackage{pdflscape}
\usepackage{longtable} \usepackage{longtable}
@ -22,6 +23,7 @@
\usepackage{listings} \usepackage{listings}
\usepackage{multirow} \usepackage{multirow}
\usepackage{float} \usepackage{float}
\usepackage{scalerel}
%\usepackage{algorithmicx} %\usepackage{algorithmicx}
\newcounter{subsubsubsection}[subsubsection] \newcounter{subsubsubsection}[subsubsection]
@ -107,14 +109,14 @@
\DeclareSimpleMathOperator{Con} \DeclareSimpleMathOperator{Con}
\DeclareMathOperator{\Zermelo}{Z} \DeclareMathOperator{\Zermelo}{\mathsf{Z}}
\DeclareSimpleMathOperator{ZF} \DeclareMathOperator{\ZF}{\mathsf{ZF}}
\DeclareSimpleMathOperator{ZFC} \DeclareMathOperator{\ZFC}{\mathsf{ZFC}}
\DeclareSimpleMathOperator{BG} \DeclareMathOperator{\BG}{\mathsf{BG}}
\DeclareSimpleMathOperator{BGC} \DeclareMathOperator{\BGC}{\mathsf{BGC}}
\DeclareSimpleMathOperator{HOD} \DeclareMathOperator{\HOD}{\mathsf{HOD}}
\DeclareSimpleMathOperator{OD} \DeclareMathOperator{\OD}{\mathsf{OD}}
\DeclareSimpleMathOperator{AC} \DeclareMathOperator{\AC}{\mathsf{AC}}
\newcommand{\AxC}{\yarefs{ax:c}} \newcommand{\AxC}{\yarefs{ax:c}}
\newcommand{\AxExt}{\yarefs{ax:ext}} % AoE \newcommand{\AxExt}{\yarefs{ax:ext}} % AoE
\newcommand{\AxFund}{\yarefs{ax:fund}} % AoF \newcommand{\AxFund}{\yarefs{ax:fund}} % AoF
@ -144,5 +146,5 @@
\newcommand\lecture[3]{\hrule{\color{darkgray}\hfill{\tiny[Lecture #1, #2]}}} \newcommand\lecture[3]{\hrule{\color{darkgray}\hfill{\tiny[Lecture #1, #2]}}}
%\newcommand\diagi{\mathop{\large \Delta}\limits} %\newcommand\diagi{\mathop{\large \Delta}\limits}
\newcommand\diagi{\mathop{\large \Delta}} \newcommand\diagi{\mathop{\scalerel*{\Delta}{\sum}}}

2
logic2-gist.tex Normal file
View file

@ -0,0 +1,2 @@
\def\EnableGist{}
\input{logic2}

View file

@ -42,11 +42,17 @@
\input{inputs/lecture_16} \input{inputs/lecture_16}
\input{inputs/lecture_17} \input{inputs/lecture_17}
\input{inputs/lecture_18} \input{inputs/lecture_18}
\input{inputs/lecture_19} \gist{
\input{inputs/lecture_20} \input{inputs/lecture_19}
\input{inputs/lecture_21} \input{inputs/lecture_20}
\input{inputs/lecture_22} \input{inputs/lecture_21}
\input{inputs/lecture_23} \input{inputs/lecture_22}
\input{inputs/lecture_23}
}{
\newpage
\section{Forcing}
The rest of the course is not relevant for the exam.
}
\cleardoublepage \cleardoublepage