This commit is contained in:
parent
3faf497be7
commit
b1b2a5974d
7 changed files with 71 additions and 26 deletions
|
@ -1,6 +1,6 @@
|
||||||
\lecture{01}{2023-10-16}{}
|
\lecture{01}{2023-10-16}{}
|
||||||
|
\gist{%
|
||||||
Literature
|
\paragraph{Literature}
|
||||||
|
|
||||||
\begin{itemize}
|
\begin{itemize}
|
||||||
\item Schindler, Set theory
|
\item Schindler, Set theory
|
||||||
|
@ -20,6 +20,7 @@ Literature
|
||||||
\item Independence of $\CH$.
|
\item Independence of $\CH$.
|
||||||
\end{itemize}
|
\end{itemize}
|
||||||
\end{itemize}
|
\end{itemize}
|
||||||
|
}{}
|
||||||
|
|
||||||
|
|
||||||
\section{Naive set theory}
|
\section{Naive set theory}
|
||||||
|
|
|
@ -6,6 +6,7 @@ Applications of induction and recursion:
|
||||||
such that $x \in t$.
|
such that $x \in t$.
|
||||||
\end{fact}
|
\end{fact}
|
||||||
\begin{proof}
|
\begin{proof}
|
||||||
|
\gist{%
|
||||||
Take $R = \in $.
|
Take $R = \in $.
|
||||||
We want a function $F$ with domain $\omega$
|
We want a function $F$ with domain $\omega$
|
||||||
such that $F(0) = \{x\}$
|
such that $F(0) = \{x\}$
|
||||||
|
@ -27,16 +28,27 @@ Applications of induction and recursion:
|
||||||
\begin{IEEEeqnarray*}{rCl}
|
\begin{IEEEeqnarray*}{rCl}
|
||||||
F(0) &=& \{x\},\\
|
F(0) &=& \{x\},\\
|
||||||
F(n+1) &=& \bigcup\bigcup \ran(F\defon{n+1})\\
|
F(n+1) &=& \bigcup\bigcup \ran(F\defon{n+1})\\
|
||||||
&=& \bigcup \bigcup \{\{x\}, x, \bigcup x, \ldots, \underbrace{\bigcup^{n-1} x}_{F(n)}\}
|
&=& \bigcup \bigcup \{\{x\}, x, \bigcup x, \ldots, \underbrace{\bigcup\nolimits^{n-1} x}_{F(n)}\}
|
||||||
= \bigcup F(n),
|
= \bigcup F(n),
|
||||||
\end{IEEEeqnarray*}
|
\end{IEEEeqnarray*}
|
||||||
i.e.~$F(n+1) = \bigcup F(n)$.
|
i.e.~$F(n+1) = \bigcup F(n)$.
|
||||||
|
}{%
|
||||||
|
\begin{itemize}
|
||||||
|
\item Use recursion ($\in $) to define $F\colon \omega \to V$
|
||||||
|
such that
|
||||||
|
\[
|
||||||
|
F(0) = \{x\}, F(n+1) = \bigcup F(n).
|
||||||
|
\]
|
||||||
|
\item $\{x\} \cup \bigcup \ran(F)$ is as desired.
|
||||||
|
\end{itemize}
|
||||||
|
}
|
||||||
\end{proof}
|
\end{proof}
|
||||||
|
\gist{%
|
||||||
\begin{notation}
|
\begin{notation}
|
||||||
Let $\OR$ denote the class of all ordinals
|
Let $\OR$ denote the class of all ordinals
|
||||||
and $V$ the class of all sets.
|
and $V$ the class of all sets.
|
||||||
\end{notation}
|
\end{notation}
|
||||||
|
}{}
|
||||||
\begin{lemma}
|
\begin{lemma}
|
||||||
There is a function $F\colon \OR \to V$
|
There is a function $F\colon \OR \to V$
|
||||||
such that $F(\alpha) = \bigcup \{\cP(F(\beta)): \beta < \alpha\}$.
|
such that $F(\alpha) = \bigcup \{\cP(F(\beta)): \beta < \alpha\}$.
|
||||||
|
@ -65,7 +77,7 @@ Applications of induction and recursion:
|
||||||
\end{enumerate}
|
\end{enumerate}
|
||||||
\end{proof}
|
\end{proof}
|
||||||
\begin{notation}
|
\begin{notation}
|
||||||
Usually, one write $V_\alpha$ for $F(\alpha)$.
|
Usually, one writes $V_\alpha$ for $F(\alpha)$.
|
||||||
They are called the \vocab{rank initial segments} of $V$.
|
They are called the \vocab{rank initial segments} of $V$.
|
||||||
\end{notation}
|
\end{notation}
|
||||||
\begin{lemma}
|
\begin{lemma}
|
||||||
|
|
|
@ -52,14 +52,22 @@ We will very rarely use ordinal arithmetic.
|
||||||
\begin{definition}
|
\begin{definition}
|
||||||
Let $\alpha$, $\beta$ be ordinals.
|
Let $\alpha$, $\beta$ be ordinals.
|
||||||
We say that $f\colon \alpha \to \beta$ is \vocab{cofinal}
|
We say that $f\colon \alpha \to \beta$ is \vocab{cofinal}
|
||||||
iff for all $\xi < \beta$, there is some $\eta < \alpha$
|
iff
|
||||||
such that $f(\eta) \ge \xi$.
|
\gist{%
|
||||||
|
for all $\xi < \beta$, there is some $\eta < \alpha$
|
||||||
|
such that $f(\eta) \ge \xi$.%
|
||||||
|
}{%
|
||||||
|
\[
|
||||||
|
\forall \xi < \beta.~\exists \eta < \alpha.~f(\eta) \ge \xi.
|
||||||
|
\]
|
||||||
|
}
|
||||||
\end{definition}
|
\end{definition}
|
||||||
|
\gist{%
|
||||||
\begin{remark}
|
\begin{remark}
|
||||||
If $\beta$ is a limit ordinal,
|
If $\beta$ is a limit ordinal,
|
||||||
this is equivalent to
|
this is equivalent to
|
||||||
\[
|
\[
|
||||||
\forall \xi < \beta .~\exists \eta \alpha.~f(\eta) > \xi.
|
\forall \xi < \beta .~\exists \eta < \alpha.~f(\eta) > \xi.
|
||||||
\]
|
\]
|
||||||
\end{remark}
|
\end{remark}
|
||||||
\begin{example}
|
\begin{example}
|
||||||
|
@ -79,7 +87,7 @@ We will very rarely use ordinal arithmetic.
|
||||||
is cofinal.
|
is cofinal.
|
||||||
\end{enumerate}
|
\end{enumerate}
|
||||||
\end{example}
|
\end{example}
|
||||||
|
}{}
|
||||||
\begin{definition}
|
\begin{definition}
|
||||||
Let $\beta$ be an ordinal.
|
Let $\beta$ be an ordinal.
|
||||||
The \vocab{cofinality} of $\beta$,
|
The \vocab{cofinality} of $\beta$,
|
||||||
|
@ -87,7 +95,7 @@ We will very rarely use ordinal arithmetic.
|
||||||
is the least ordinal $\alpha$
|
is the least ordinal $\alpha$
|
||||||
such that there exists a cofinal
|
such that there exists a cofinal
|
||||||
$f\colon \alpha \to \beta$.
|
$f\colon \alpha \to \beta$.
|
||||||
\end{definition}k
|
\end{definition}
|
||||||
\begin{example}
|
\begin{example}
|
||||||
\begin{itemize}
|
\begin{itemize}
|
||||||
\item $\cf(\aleph_\omega) = \omega$.
|
\item $\cf(\aleph_\omega) = \omega$.
|
||||||
|
@ -139,7 +147,7 @@ In particular, a regular ordinal is always a cardinal.
|
||||||
Clearly this is cofinal.
|
Clearly this is cofinal.
|
||||||
\end{proof}
|
\end{proof}
|
||||||
\begin{warning}
|
\begin{warning}
|
||||||
Note that in general, a composition of cofinal map
|
Note that in general, a composition of cofinal maps
|
||||||
is not necessarily cofinal.
|
is not necessarily cofinal.
|
||||||
\end{warning}
|
\end{warning}
|
||||||
|
|
||||||
|
|
14
jrpie-gist.sty
Normal file
14
jrpie-gist.sty
Normal file
|
@ -0,0 +1,14 @@
|
||||||
|
\NeedsTeXFormat{LaTeX2e}
|
||||||
|
\ProvidesPackage{jrpie-gist}[2023/01/22 - gist version for lecture notes]
|
||||||
|
|
||||||
|
% TODO gist info
|
||||||
|
% TODO link to long version (provide link to main document)
|
||||||
|
|
||||||
|
% TODO \phantomsection to cross link
|
||||||
|
\newcommand{\gist}[2]{%
|
||||||
|
\ifcsname EnableGist\endcsname%
|
||||||
|
#2%
|
||||||
|
\else%
|
||||||
|
#1%
|
||||||
|
\fi%
|
||||||
|
}
|
20
logic.sty
20
logic.sty
|
@ -9,6 +9,7 @@
|
||||||
\usepackage{mkessler-code}
|
\usepackage{mkessler-code}
|
||||||
\usepackage{jrpie-math}
|
\usepackage{jrpie-math}
|
||||||
\usepackage{jrpie-yaref}
|
\usepackage{jrpie-yaref}
|
||||||
|
\usepackage{jrpie-gist}
|
||||||
\usepackage[normalem]{ulem}
|
\usepackage[normalem]{ulem}
|
||||||
\usepackage{pdflscape}
|
\usepackage{pdflscape}
|
||||||
\usepackage{longtable}
|
\usepackage{longtable}
|
||||||
|
@ -22,6 +23,7 @@
|
||||||
\usepackage{listings}
|
\usepackage{listings}
|
||||||
\usepackage{multirow}
|
\usepackage{multirow}
|
||||||
\usepackage{float}
|
\usepackage{float}
|
||||||
|
\usepackage{scalerel}
|
||||||
%\usepackage{algorithmicx}
|
%\usepackage{algorithmicx}
|
||||||
|
|
||||||
\newcounter{subsubsubsection}[subsubsection]
|
\newcounter{subsubsubsection}[subsubsection]
|
||||||
|
@ -107,14 +109,14 @@
|
||||||
\DeclareSimpleMathOperator{Con}
|
\DeclareSimpleMathOperator{Con}
|
||||||
|
|
||||||
|
|
||||||
\DeclareMathOperator{\Zermelo}{Z}
|
\DeclareMathOperator{\Zermelo}{\mathsf{Z}}
|
||||||
\DeclareSimpleMathOperator{ZF}
|
\DeclareMathOperator{\ZF}{\mathsf{ZF}}
|
||||||
\DeclareSimpleMathOperator{ZFC}
|
\DeclareMathOperator{\ZFC}{\mathsf{ZFC}}
|
||||||
\DeclareSimpleMathOperator{BG}
|
\DeclareMathOperator{\BG}{\mathsf{BG}}
|
||||||
\DeclareSimpleMathOperator{BGC}
|
\DeclareMathOperator{\BGC}{\mathsf{BGC}}
|
||||||
\DeclareSimpleMathOperator{HOD}
|
\DeclareMathOperator{\HOD}{\mathsf{HOD}}
|
||||||
\DeclareSimpleMathOperator{OD}
|
\DeclareMathOperator{\OD}{\mathsf{OD}}
|
||||||
\DeclareSimpleMathOperator{AC}
|
\DeclareMathOperator{\AC}{\mathsf{AC}}
|
||||||
\newcommand{\AxC}{\yarefs{ax:c}}
|
\newcommand{\AxC}{\yarefs{ax:c}}
|
||||||
\newcommand{\AxExt}{\yarefs{ax:ext}} % AoE
|
\newcommand{\AxExt}{\yarefs{ax:ext}} % AoE
|
||||||
\newcommand{\AxFund}{\yarefs{ax:fund}} % AoF
|
\newcommand{\AxFund}{\yarefs{ax:fund}} % AoF
|
||||||
|
@ -144,5 +146,5 @@
|
||||||
|
|
||||||
\newcommand\lecture[3]{\hrule{\color{darkgray}\hfill{\tiny[Lecture #1, #2]}}}
|
\newcommand\lecture[3]{\hrule{\color{darkgray}\hfill{\tiny[Lecture #1, #2]}}}
|
||||||
%\newcommand\diagi{\mathop{\large \Delta}\limits}
|
%\newcommand\diagi{\mathop{\large \Delta}\limits}
|
||||||
\newcommand\diagi{\mathop{\large \Delta}}
|
\newcommand\diagi{\mathop{\scalerel*{\Delta}{\sum}}}
|
||||||
|
|
||||||
|
|
2
logic2-gist.tex
Normal file
2
logic2-gist.tex
Normal file
|
@ -0,0 +1,2 @@
|
||||||
|
\def\EnableGist{}
|
||||||
|
\input{logic2}
|
16
logic2.tex
16
logic2.tex
|
@ -42,11 +42,17 @@
|
||||||
\input{inputs/lecture_16}
|
\input{inputs/lecture_16}
|
||||||
\input{inputs/lecture_17}
|
\input{inputs/lecture_17}
|
||||||
\input{inputs/lecture_18}
|
\input{inputs/lecture_18}
|
||||||
\input{inputs/lecture_19}
|
\gist{
|
||||||
\input{inputs/lecture_20}
|
\input{inputs/lecture_19}
|
||||||
\input{inputs/lecture_21}
|
\input{inputs/lecture_20}
|
||||||
\input{inputs/lecture_22}
|
\input{inputs/lecture_21}
|
||||||
\input{inputs/lecture_23}
|
\input{inputs/lecture_22}
|
||||||
|
\input{inputs/lecture_23}
|
||||||
|
}{
|
||||||
|
\newpage
|
||||||
|
\section{Forcing}
|
||||||
|
The rest of the course is not relevant for the exam.
|
||||||
|
}
|
||||||
|
|
||||||
|
|
||||||
\cleardoublepage
|
\cleardoublepage
|
||||||
|
|
Loading…
Reference in a new issue