This commit is contained in:
parent
f7bd6359bd
commit
ad39e2ac6d
1 changed files with 27 additions and 0 deletions
27
inputs/lecture_03.tex
Normal file
27
inputs/lecture_03.tex
Normal file
|
@ -0,0 +1,27 @@
|
||||||
|
\lecture{03}{2023-10–23}{Cantor-Bendixson}
|
||||||
|
|
||||||
|
\begin{theorem}[Cantor-Bendixson]
|
||||||
|
\yaref{thm:cantorbendixson}{Cantor-Bendixson}{Cantor-Bendixson}
|
||||||
|
|
||||||
|
If $A \subseteq \R$ is closed,
|
||||||
|
it is either at most countable or else
|
||||||
|
$A$ contains a perfect set.
|
||||||
|
\end{theorem}
|
||||||
|
\begin{corollary}
|
||||||
|
If $A se \R$ is closed,
|
||||||
|
then either $A \le \N$ or $A \sim \R$.
|
||||||
|
\end{corollary}
|
||||||
|
\begin{fact}
|
||||||
|
$A' = \{x \in \R | \forall a < x < b.~ (a,b) \cap A \text{ is at least countable}\}$.
|
||||||
|
\end{fact}
|
||||||
|
\begin{proof}
|
||||||
|
$\supseteq$ is clear.
|
||||||
|
For $\subseteq $, fix $a < x < b$
|
||||||
|
and let us define $(y_n: n \in \omega)$
|
||||||
|
as well as $((a_n, b_n): n \in \omega)$.
|
||||||
|
|
||||||
|
% TODO
|
||||||
|
|
||||||
|
\end{proof}
|
||||||
|
|
||||||
|
|
Loading…
Reference in a new issue