This commit is contained in:
parent
a8c758c5f0
commit
a844f91bc5
3 changed files with 143 additions and 10 deletions
|
@ -13,8 +13,24 @@ Applications of induction and recursion:
|
|||
Once we have such a function,
|
||||
$\{x\} \cup \bigcup \ran(F)$
|
||||
is a set as desired.
|
||||
|
||||
\todo{insert formal application of recursion theorem}
|
||||
To get this $F$ using the recursion theorem,
|
||||
pick $D$ such that
|
||||
\[
|
||||
(\emptyset, 0, \{x\}) \in D
|
||||
\]
|
||||
and
|
||||
\[
|
||||
(f, n+1, \bigcup\bigcup \ran(f)) \in D.
|
||||
\]
|
||||
The recursion theorem then gives a function
|
||||
such that
|
||||
\begin{IEEEeqnarray*}{rCl}
|
||||
F(0) &=& \{x\},\\
|
||||
F(n+1) &=& \bigcup\bigcup \ran(F\defon{n+1})\\
|
||||
&=& \bigcup \bigcup \{\{x\}, x, \bigcup x, \ldots, \underbrace{\bigcup^{n-1} x}_{F(n)}\}
|
||||
= \bigcup F(n),
|
||||
\end{IEEEeqnarray*}
|
||||
i.e.~$F(n+1) = \bigcup F(n)$.
|
||||
\end{proof}
|
||||
|
||||
\begin{notation}
|
||||
|
@ -26,7 +42,27 @@ Applications of induction and recursion:
|
|||
such that $F(\alpha) = \bigcup \{\cP(F(\beta)): \beta < \alpha\}$.
|
||||
\end{lemma}
|
||||
\begin{proof}
|
||||
\todo{TODO}
|
||||
Use the recursion theorem with $R = \in $
|
||||
and $(w,x,y) \in D$ iff
|
||||
\[
|
||||
y = \bigcup \{\cP(\overline{y}) : \overline{y} \in \ran(w)\}.
|
||||
\]
|
||||
This function has the following properties:
|
||||
\begin{IEEEeqnarray*}{rCl}
|
||||
F(0) &=& \bigcup \emptyset = \emptyset,\\
|
||||
F(1) &=& \bigcup \{\cP(\emptyset)\} = \bigcup \{\{\emptyset\} \} = \{\emptyset\},\\
|
||||
F(2) &=& \bigcup \{\cP(\emptyset), \cP(\{\emptyset\})\} = \bigcup \{\{\emptyset\}, \{\emptyset, \{\emptyset\} \} \} = \{\emptyset, \{\emptyset\} \},\\
|
||||
\ldots
|
||||
\end{IEEEeqnarray*}
|
||||
|
||||
It is easy to prove by induction:
|
||||
\begin{enumerate}[(a)]
|
||||
\item Every $F(\alpha)$ is transitive.
|
||||
\item $F(\alpha) \subseteq F(\beta)$ for all $\alpha \le \beta$.
|
||||
\item $F(\alpha+1) = \cP(F(\alpha))$ for all $\alpha \in \OR$.
|
||||
\item $F(\lambda) = \bigcup \{F(\beta) :\beta < \lambda\}$
|
||||
for $\lambda \in \OR$ a limit.
|
||||
\end{enumerate}
|
||||
\end{proof}
|
||||
\begin{notation}
|
||||
Usually, one write $V_\alpha$ for $F(\alpha)$.
|
||||
|
@ -37,4 +73,97 @@ Applications of induction and recursion:
|
|||
such that $x \in V_\alpha$,
|
||||
i.e.~$V = \bigcup \{V_{\alpha} : \alpha \in \OR\}$.
|
||||
\end{lemma}
|
||||
\begin{proof}
|
||||
We use induction on the well-founded $\in$-relation.
|
||||
Let $A = \bigcup \{V_\alpha : \alpha \in \OR\}$.
|
||||
We need to show that $A = V$.
|
||||
By induction it suffices to prove that for every $x \in V$,
|
||||
if $\{y : y \in x\} \subseteq A$, then $x \in A$.
|
||||
The hypothesis says that for all $y \in x$,
|
||||
there is some $\alpha$ with $y \in V_\alpha$.
|
||||
Write $\alpha_y$ for the least such $\alpha$.
|
||||
By \AxRep, $\{\alpha_y : y \in x\}$
|
||||
is a set and we may let
|
||||
$\alpha = \sup \{\alpha_y : y \in x\} \ge \alpha_y$
|
||||
for all $y \in x$.
|
||||
Then $y \in V_{\alpha_y} \subseteq V_\alpha$
|
||||
for all $y \in x$.
|
||||
|
||||
In other words $x \subseteq V_\alpha$,
|
||||
hence $x \in V_{\alpha+1}$.
|
||||
\end{proof}
|
||||
|
||||
\begin{lemma}[\vocab{Transitive collapse}/\vocab{Mostowski collapse}]
|
||||
\yalabel{Mostowski Collapse}{Mostowski}{lem:mostowski}
|
||||
Let $R$ be a binary set-like relation on a class $A$.
|
||||
Then $R$ is well-founded iff there is a transitive class $B$
|
||||
such that
|
||||
\[
|
||||
(B, \in\defon{B}) \cong (A, R),
|
||||
\]
|
||||
i.e.~there is an isomorphism $F$,
|
||||
that is a function $F\colon B \to A$
|
||||
with $x \in y \iff (F(x),F(y)) \in R$ for $x,y \in B$.
|
||||
\end{lemma}
|
||||
\begin{proof}
|
||||
``$\impliedby$'' Suppose that $R$ is ill-founded
|
||||
(i.e.~not well-founded).
|
||||
Then there is some $(y_n : n < \omega)$ such that $y_n \in A$
|
||||
and $(y_{n+1}, y_n) \in R$ for all $n < \omega$.
|
||||
But then if $F$ is an isomorphism as above,
|
||||
\[
|
||||
F^{-1}(Y_{n+1}) \in F^{-1}(Y_n)
|
||||
\]
|
||||
for all $n < \omega$ $\lightning$
|
||||
|
||||
``$\implies$ '' Suppose that $R$ is well-founded.
|
||||
We want a transitive class $B$ and a function $F\colon B \leftrightarrow A$
|
||||
such that
|
||||
\[
|
||||
x \in y \iff (F(x), F(y)) \in R.
|
||||
\]
|
||||
Equivalently $G\colon A \leftrightarrow B$
|
||||
with $(x,y) \in R$ iff $G(x) \in G(y)$ for all $x,y \in A$.
|
||||
|
||||
In other words, $G(y) = \{G(x) : (x,y) \in R\}$.
|
||||
Such a function $G$ and class $B$ exist by the recursion theorem.
|
||||
\end{proof}
|
||||
|
||||
\begin{lemma}[\vocab{Rank function}]
|
||||
Let $R$ be a well-founded and set-like binary relation
|
||||
on a class $A$.
|
||||
Then there is a function $F\colon A \to \OR$,
|
||||
such that for all $x,y \in A$
|
||||
\[(x,y) \in R \implies F(x) < F(y) F(x) < F(y).\]
|
||||
\end{lemma}
|
||||
\begin{proof}
|
||||
By the recursion theorem,
|
||||
there is $F$ such that
|
||||
\[
|
||||
F(y) = \sup \{F(x) + 1 : (x,y) \in R\}.
|
||||
\]
|
||||
This function is as desired.
|
||||
\end{proof}
|
||||
|
||||
This does not skip any ordinals,
|
||||
as $F(y)$ is the least ordinal $> F(x)$
|
||||
for all $(x,y) \in R$.
|
||||
Thus $\ran(F)$ is transitive.
|
||||
So either $\ran(F) = \OR$
|
||||
or $\ran(F) \in \OR$.
|
||||
This $F$ is called the \vocab{rank function} for $(A, R)$.
|
||||
\begin{notation}
|
||||
\[
|
||||
\rk_R(x) = \|x\|_R \coloneqq F(x),
|
||||
\]
|
||||
and
|
||||
\[
|
||||
\rk_R \rank(R) \coloneqq \ran(F).
|
||||
\]
|
||||
|
||||
In the special case that $R$ is a linear order on $A$,
|
||||
hence a well-order,
|
||||
$\rank(R)$ is called the \vocab{order type} of $R$
|
||||
(or of $(A,R)$), written $\otp(R)$.
|
||||
\end{notation}
|
||||
|
||||
|
|
|
@ -158,21 +158,21 @@ so $|a| = \aleph_\beta$ for some $\beta \le |\alpha|$.
|
|||
\[
|
||||
\ran(\Gamma\defon{\aleph_\alpha \times \aleph_\alpha}) \supseteq \aleph_\alpha,
|
||||
\]
|
||||
as otherwise $\Gamma\defon{\aleph_\alpha \times \alepha_\alpha}: \alepha_{\alpha} \times \alepha_\alpha \to \eta$
|
||||
would be a bijection for some $\eta < \alepha_\alpha$,
|
||||
but $\alepha_\alpha$ is a cardinal.
|
||||
as otherwise $\Gamma\defon{\aleph_\alpha \times \aleph_\alpha}: \aleph_{\alpha} \times \aleph_\alpha \to \eta$
|
||||
would be a bijection for some $\eta < \aleph_\alpha$,
|
||||
but $\aleph_\alpha$ is a cardinal.
|
||||
|
||||
Suppose that $\ran(\Gamma\defon{\aleph_\alpha \times \alepha_\alpha}) \supsetneq \aleph_\alpha$.
|
||||
Suppose that $\ran(\Gamma\defon{\aleph_\alpha \times \aleph_\alpha}) \supsetneq \aleph_\alpha$.
|
||||
Then there exist $\eta, \eta' < \aleph_\alpha$ with
|
||||
\[
|
||||
\Gamma((\eta, \eta')) = \alepha_\alpha.
|
||||
\Gamma((\eta, \eta')) = \aleph_\alpha.
|
||||
\]
|
||||
|
||||
So $\Gamma\defon{\{(\gamma,\delta) : (\gamma,\delta) <^\ast (\eta, \eta'\}}$
|
||||
is bijective onto $\alepha_\alpha$.
|
||||
is bijective onto $\aleph_\alpha$.
|
||||
If $(\gamma,\delta) <^\ast (\eta, \eta')$,
|
||||
then $\max \{\gamma,\delta\} \le \max \{\eta, \eta'\}$.
|
||||
Say $\eta \le \eta' < \alepha_\alpha$
|
||||
Say $\eta \le \eta' < \aleph_\alpha$
|
||||
and let $\aleph_\alpha = |\eta'|$.
|
||||
There is a surjection
|
||||
\[f\colon \underbrace{(\eta +1)}_{ \le \aleph_\beta} \times \underbrace{(\eta' + 1)}_{\sim \aleph_\beta} \twoheadrightarrow \aleph_\alpha.\]
|
||||
|
|
|
@ -135,5 +135,9 @@
|
|||
\newcommand{\concat}{{}^\frown}
|
||||
\DeclareMathOperator{\hght}{height}
|
||||
|
||||
\DeclareSimpleMathOperator{rank}
|
||||
\DeclareSimpleMathOperator{rk}
|
||||
\DeclareSimpleMathOperator{otp}
|
||||
|
||||
\newcommand\lecture[3]{\hrule{\color{darkgray}\hfill{\tiny[Lecture #1, #2]}}}
|
||||
|
||||
|
|
Loading…
Reference in a new issue