This commit is contained in:
parent
e7baf0832b
commit
a6465aea45
2 changed files with 236 additions and 1 deletions
|
@ -1 +1,235 @@
|
||||||
\lecture{06}{}{AC and the well ordering theorem}
|
\lecture{06}{2023-11-06}{}
|
||||||
|
|
||||||
|
\begin{theorem}[Zorn]
|
||||||
|
\yalabel{Zorn's Lemma}{Zorn}{thm:zorn}
|
||||||
|
Let $(a, \le )$ be a partial order with $a \neq \emptyset$.
|
||||||
|
Assume that $b \le a$ with $b \neq \emptyset$
|
||||||
|
and $ b$ linearly ordered, $b$ has an upper bound,
|
||||||
|
Then $a$ has a maximal element.
|
||||||
|
\end{theorem}
|
||||||
|
\begin{proof}
|
||||||
|
Fix $(a, \le )$ as in the hypothesis.
|
||||||
|
Let $A \coloneqq \{ \{(b,x) : x in b\} : b \le a, b \neq \emptyset\}$.
|
||||||
|
Note that $A$ is a set (use separation on $\cP(\cP(a) \times \bigcup \cP(a))$).
|
||||||
|
Note further that if $b_1 \neq b_2$,
|
||||||
|
then $\{(b_1, x) : x \in b_1\} $
|
||||||
|
and $\{(b_2, x) : x \in b_2\}$ are disjoint.
|
||||||
|
Hence the axiom of choice
|
||||||
|
gives us a choice function $f$ on $A$,
|
||||||
|
i.e.~$\forall b \in \cP(a) \setminus \{\emptyset\} .~(f(b) \in b)$.
|
||||||
|
|
||||||
|
Now define a binary relation $\le^\ast$:
|
||||||
|
We let $W$ denote the set of all well-orderings $\le'$
|
||||||
|
of subsets $b \subseteq a$,
|
||||||
|
such that for all $u,v \in b$
|
||||||
|
if $u \le' v$ then $u \le v$
|
||||||
|
and for all $u \in b$
|
||||||
|
and
|
||||||
|
\[
|
||||||
|
B_u^{\le'} \coloneqq \{ w \in a : w \text{ is an $\le$-upper bound of $\{v \in b : v \le' u\}$}\}
|
||||||
|
\]
|
||||||
|
then $B_u^{\le'} \neq \emptyset$ and $f(B^{\le'}_u) = u$.
|
||||||
|
|
||||||
|
\begin{claim}
|
||||||
|
If $\le', \le'' \in W$,
|
||||||
|
then $\le' \subseteq \le''$ or $\le'' \subseteq \le'$.
|
||||||
|
\end{claim}
|
||||||
|
\begin{subproof}
|
||||||
|
Let $\le' \in W$ be a well-ordering of $b \subseteq a$
|
||||||
|
and let $\le'' \in W$ be a well-ordering on $c \subseteq a$.
|
||||||
|
We know that wlog.~$(b, \le') \cong (c, \le'')$
|
||||||
|
or $\exists v \in c .~(b, \le') \cong (c, \le'')\defon{v}$.
|
||||||
|
Let $g\colon b \to c$ or $g\colon b \to c\defon{v}$ be a witness.
|
||||||
|
We want to show that $g = \id$.
|
||||||
|
Suppose that $g \neq \id$.
|
||||||
|
Let $u_0 \in b$ be $\le'$-minimal such that $g(u_0) \neq u_0$.
|
||||||
|
Writing $\overline{g} \coloneqq g\defon{\{w \in b: w <' u_0\}}$,
|
||||||
|
then $(b, \le ')\defon{u_0} \cong (c, \le'') \defon{g(u_0)}$
|
||||||
|
and $\overline{g}$ is in fact the identity on $\{w \in b | w \le' u_0\}$
|
||||||
|
but this means $\{w \in b | w <' u_0\} = \{w \in c | w <'' g(u_0)\}$
|
||||||
|
and $B_{u_0}^{\le'} = B_{g(u_0)}^{\le''} \neq \emptyset$.
|
||||||
|
Then $u_0 = f(B_{u_0}^{\le'}) = f(B_{g(u_0)}^{\le''}) = g(u_0)$.
|
||||||
|
Thus $g$ is the identity.
|
||||||
|
\end{subproof}
|
||||||
|
Given the claim, we can now see that $\bigcup W$ is a well order $\le^{\ast\ast}$
|
||||||
|
of $a$.
|
||||||
|
Let $B = \{w \in a | w \text{ is a $\le$-upper bound of $b$}\}$
|
||||||
|
(this is not empty by the hypothesis).
|
||||||
|
Suppose that $b$ does not have a maximum.
|
||||||
|
Then $B \cap b = \emptyset$.
|
||||||
|
Now $f(B) = u_0$
|
||||||
|
and let
|
||||||
|
\[
|
||||||
|
\le^{\ast\ast} = \le^{\ast} \cup \{(u,u_0) | u \in b\} \cup \{(u_0,u_0)\}.
|
||||||
|
\]
|
||||||
|
Then $B = B_{u_0}^{\le^{\ast\ast}}$.
|
||||||
|
So $\le^{\ast\ast} \in W$, but now $n_0 \in b$.
|
||||||
|
So $b$ must have a maximum.
|
||||||
|
\end{proof}
|
||||||
|
|
||||||
|
\begin{remark}
|
||||||
|
Over $\ZF$ the axiom of choice and \yaref{thm:zorn}
|
||||||
|
are equivalent.
|
||||||
|
\end{remark}
|
||||||
|
|
||||||
|
\begin{corollary}[Hausdorff's maximality principle]
|
||||||
|
Let $a \neq \emptyset$.
|
||||||
|
Let $A \subseteq \cP(a)$ be such that $\forall B \subseteq A$,
|
||||||
|
if $x \subseteq y \lor y \subseteq x$
|
||||||
|
for all $x,y \in B$,
|
||||||
|
then there is some $z \in A$
|
||||||
|
such that $x \subseteq z$ for all $x \in B$.
|
||||||
|
Then $A$ contains a $\subseteq$-maximal element.
|
||||||
|
\end{corollary}
|
||||||
|
|
||||||
|
\begin{remark}[Cultural enrichment]
|
||||||
|
Other assertion which are equivalent
|
||||||
|
to the axiom of choice:
|
||||||
|
\begin{itemize}
|
||||||
|
\item Every infinite family of non-empty sets
|
||||||
|
$\langle a_i : i \in I \rangle$
|
||||||
|
has non-empty product,
|
||||||
|
i.e.
|
||||||
|
\[
|
||||||
|
\prod_{i \in I} a_i \neq \emptyset.%\footnote{This is clearly true.}
|
||||||
|
\]
|
||||||
|
\item Every set can be well-ordered.%\footnote{This is clearly false.}
|
||||||
|
\end{itemize}
|
||||||
|
\end{remark}
|
||||||
|
% \begin{remark}
|
||||||
|
% The axiom of choice is true.
|
||||||
|
% \end{remark}
|
||||||
|
|
||||||
|
\pagebreak
|
||||||
|
\subsection{The Ordinals}
|
||||||
|
\begin{goal}
|
||||||
|
We want to define nice representatives of the equivalence classes
|
||||||
|
of well-orders.
|
||||||
|
% TODO theorem
|
||||||
|
\end{goal}
|
||||||
|
Recall that (AoI) states the existence of an inductive set $x$.
|
||||||
|
We can hence form the smallest inductive set
|
||||||
|
\[
|
||||||
|
\omega \coloneqq \bigcap \{ x : x \text{ is inductive}\}
|
||||||
|
\]
|
||||||
|
Note that $\omega$ exists, as it is a subset of the inductive
|
||||||
|
set given by AoI.
|
||||||
|
We call $\omega$ the set of \vocab{natural numbers}.
|
||||||
|
|
||||||
|
\begin{notation}
|
||||||
|
We write $0$ for $\emptyset$,
|
||||||
|
and $y + 1$ for $y \cup \{y\}$.
|
||||||
|
\end{notation}
|
||||||
|
With this notation the AoI is equivalent to
|
||||||
|
\[
|
||||||
|
\exists x_0.~(0 \in x_0 \land \forall n. ~(n \in x_0 \implies n+1 \in x_0)).
|
||||||
|
\]
|
||||||
|
|
||||||
|
We have the following principle of induction:
|
||||||
|
\begin{lemma}
|
||||||
|
\yalabel{Induction}{Induction}{lem:induction}
|
||||||
|
Let $A \subseteq \omega$ such that $0 \in A$
|
||||||
|
and for each $y \in A$, we have that $y + 1 \in A$.
|
||||||
|
Then $A = \omega$.
|
||||||
|
\end{lemma}
|
||||||
|
\begin{proof}
|
||||||
|
Clearly $A$ is an inductive set,
|
||||||
|
hence $\omega \subseteq A$.
|
||||||
|
\end{proof}
|
||||||
|
|
||||||
|
\begin{definition}
|
||||||
|
A set $x$ is \vocab{transitive},
|
||||||
|
if $\forall y \in x.~y \subseteq x$.
|
||||||
|
\end{definition}
|
||||||
|
\begin{definition}
|
||||||
|
A set $x$ is called an \vocab{ordinal} (or \vocab{ordinal number})
|
||||||
|
iff $x$ is transitive
|
||||||
|
and for all $y, z \in x$,
|
||||||
|
we have that $y = z$, $y \in z$ or $y \ni z$.
|
||||||
|
\end{definition}
|
||||||
|
Clearly, the $\in$-relation is a well-order on an ordinal $x$.
|
||||||
|
\begin{remark}
|
||||||
|
This definition is due to \textsc{John von Neumann}.
|
||||||
|
\end{remark}
|
||||||
|
|
||||||
|
\begin{lemma}
|
||||||
|
Each natural number (i.e.~element of $\omega$)
|
||||||
|
is an ordinal.
|
||||||
|
\end{lemma}
|
||||||
|
\begin{proof}
|
||||||
|
We use \yaref{lem:induction}.
|
||||||
|
Clearly $\emptyset$ is an ordinal.
|
||||||
|
Now let $\alpha$ be an ordinal.
|
||||||
|
We need to show that $\alpha + 1$ is an ordinal.
|
||||||
|
It is transitive, since $\alpha$ is transitive
|
||||||
|
and $\alpha \subseteq (\alpha + 1)$.
|
||||||
|
|
||||||
|
Let $x, y \in (\alpha+1)$.
|
||||||
|
If $x, y \in \alpha$, we know that $x = y \lor x \in y \lor x \ni y$
|
||||||
|
since $\alpha$ is an ordinal.
|
||||||
|
Suppose $x = \alpha$.
|
||||||
|
Then either $y = x$ or $y \in \alpha = x$.
|
||||||
|
\end{proof}
|
||||||
|
|
||||||
|
\begin{lemma}
|
||||||
|
$\omega$ is an ordinal.
|
||||||
|
\end{lemma}
|
||||||
|
\begin{proof}
|
||||||
|
$\omega$ is transitive:
|
||||||
|
|
||||||
|
Let $y \in \omega$. Let us show by \yaref{lem:induction},
|
||||||
|
that $y \subseteq \omega$.
|
||||||
|
For $y = \emptyset$ this is clear.
|
||||||
|
|
||||||
|
Suppose that $y \in \omega$ with $y \subseteq \omega$.
|
||||||
|
But now $\{y\} \subseteq \omega$,
|
||||||
|
so $y + 1 = y \cup \{y\} \subseteq \omega$.
|
||||||
|
|
||||||
|
|
||||||
|
$\omega$ is well-ordered by $\in$:
|
||||||
|
|
||||||
|
We do a nested induction. First let
|
||||||
|
\[
|
||||||
|
\phi(y,z) \coloneqq y \in z \lor y \ni z \lor y = z.
|
||||||
|
\]
|
||||||
|
We want to show:
|
||||||
|
\begin{enumerate}[(a)]
|
||||||
|
\item $\phi(0,0)$
|
||||||
|
\item $\forall z \in \omega. ~\phi(0, z) \implies \phi(0,z+1)$.
|
||||||
|
\item $\forall y \in \omega.((\forall z' \in \omega.~\phi(y,z')) \implies (\forall z \in \omega.~\phi(y+1, z')))$.
|
||||||
|
\end{enumerate}
|
||||||
|
(a) and (b) are trivial.
|
||||||
|
Fix $y \in \omega$ and
|
||||||
|
suppose that $\forall z' \in \omega .~\phi(y, z')$.
|
||||||
|
We want to show that $\forall z \in \omega .~\phi(y+1, z)$.
|
||||||
|
|
||||||
|
We already know that $\forall z \in \omega.~\phi(0,z)$ holds
|
||||||
|
by (b).
|
||||||
|
In particular, $\phi(0,y+1)$ holds,
|
||||||
|
so $\phi(y+1, 0)$ is true, since $\phi$ is symmetric.
|
||||||
|
Now if $\phi(y+1,z)$ is true,
|
||||||
|
we want to show $\phi(y+1,z+1)$ is true as well.
|
||||||
|
We have $y + 1 \in z \lor y + 1 = z \lor y + 1 \ni z$
|
||||||
|
by assumption.
|
||||||
|
\begin{itemize}
|
||||||
|
\item If $y + 1 \in z \lor y+1 = z$, then clearly $y + 1 \in z + 1$.
|
||||||
|
\item If $y +1 \ni z$, then either $z = y$ or $z \in y$.
|
||||||
|
\begin{itemize}
|
||||||
|
\item In the first case, $z+1 = y+1$.
|
||||||
|
\item Suppose that $z \in y$.
|
||||||
|
Then by the induction hypothesis $\phi(y, z+1)$ holds.
|
||||||
|
If $y \in z+1$, then $\{y,z\}$ would violate AoF.
|
||||||
|
If $y = z+1$, then $z + 1 \in y + 1$.
|
||||||
|
If $z+1 \in y$, then $z+1 \in y+1$ as well.
|
||||||
|
\end{itemize}
|
||||||
|
\end{itemize}
|
||||||
|
|
||||||
|
\end{proof}
|
||||||
|
|
||||||
|
|
||||||
|
|
||||||
|
|
||||||
|
|
||||||
|
|
||||||
|
|
||||||
|
|
||||||
|
|
|
@ -29,6 +29,7 @@
|
||||||
\input{inputs/lecture_03}
|
\input{inputs/lecture_03}
|
||||||
\input{inputs/lecture_04}
|
\input{inputs/lecture_04}
|
||||||
\input{inputs/lecture_05}
|
\input{inputs/lecture_05}
|
||||||
|
\input{inputs/lecture_06}
|
||||||
|
|
||||||
|
|
||||||
\cleardoublepage
|
\cleardoublepage
|
||||||
|
|
Loading…
Reference in a new issue