This commit is contained in:
parent
ab14be172f
commit
9956de5277
11 changed files with 81 additions and 29 deletions
|
@ -40,7 +40,7 @@
|
||||||
\label{lem:closedaccumulation}
|
\label{lem:closedaccumulation}
|
||||||
A set $A \subseteq \R$ is closed iff $A' \subseteq A$.
|
A set $A \subseteq \R$ is closed iff $A' \subseteq A$.
|
||||||
\end{lemma}
|
\end{lemma}
|
||||||
\begin{refproof}{lem:closedaccumulation}
|
\begin{yarefproof}{lem:closedaccumulation}
|
||||||
``$\implies$''
|
``$\implies$''
|
||||||
\gist{%
|
\gist{%
|
||||||
Let $A$ be closed. Suppose that $x \in A' \setminus A$.
|
Let $A$ be closed. Suppose that $x \in A' \setminus A$.
|
||||||
|
@ -75,7 +75,7 @@
|
||||||
there would be some Cauchy-sequence $(x_n)$
|
there would be some Cauchy-sequence $(x_n)$
|
||||||
in $A$ such that $\lim_{n \to \infty} x_n \not\in A$.
|
in $A$ such that $\lim_{n \to \infty} x_n \not\in A$.
|
||||||
But then $x \in A' \subseteq A \lightning$.
|
But then $x \in A' \subseteq A \lightning$.
|
||||||
\end{refproof}
|
\end{yarefproof}
|
||||||
\begin{definition}
|
\begin{definition}
|
||||||
$P \subseteq \R$ (or, more generally, a subset of any topological space)
|
$P \subseteq \R$ (or, more generally, a subset of any topological space)
|
||||||
is called \vocab{perfect}
|
is called \vocab{perfect}
|
||||||
|
|
|
@ -37,7 +37,7 @@
|
||||||
By the fact we just proved,
|
By the fact we just proved,
|
||||||
all condensation points are accumulation points.
|
all condensation points are accumulation points.
|
||||||
|
|
||||||
\begin{refproof}{thm:cantorbendixson}
|
\begin{yarefproof}{thm:cantorbendixson}
|
||||||
Fix $A \subseteq \R$ closed.
|
Fix $A \subseteq \R$ closed.
|
||||||
We want to see that $A$ is at most countable
|
We want to see that $A$ is at most countable
|
||||||
or there is some perfect $P \subseteq A$.
|
or there is some perfect $P \subseteq A$.
|
||||||
|
@ -109,7 +109,7 @@ all condensation points are accumulation points.
|
||||||
\[
|
\[
|
||||||
A = \overbrace{P}^{\mathclap{\text{perfect, unless $= \emptyset$}}} \cup \underbrace{(A \setminus P)}_{\mathclap{\text{at most countable}}}.
|
A = \overbrace{P}^{\mathclap{\text{perfect, unless $= \emptyset$}}} \cup \underbrace{(A \setminus P)}_{\mathclap{\text{at most countable}}}.
|
||||||
\]
|
\]
|
||||||
\end{refproof}
|
\end{yarefproof}
|
||||||
|
|
||||||
\gist{\todo{Alternative proof of Cantor-Bendixson}}{}
|
\gist{\todo{Alternative proof of Cantor-Bendixson}}{}
|
||||||
% \begin{remark}
|
% \begin{remark}
|
||||||
|
|
|
@ -7,7 +7,7 @@
|
||||||
and $ b$ linearly ordered, $b$ has an upper bound.
|
and $ b$ linearly ordered, $b$ has an upper bound.
|
||||||
Then $a$ has a maximal element.
|
Then $a$ has a maximal element.
|
||||||
\end{theorem}
|
\end{theorem}
|
||||||
\begin{refproof}{thm:zorn}
|
\begin{yarefproof}{thm:zorn}
|
||||||
\gist{%
|
\gist{%
|
||||||
Fix $(a, \le )$ as in the hypothesis.
|
Fix $(a, \le )$ as in the hypothesis.
|
||||||
Let $A \coloneqq \{ \{(b,x) : x \in b\} : b \subseteq a, b \neq \emptyset\}$.
|
Let $A \coloneqq \{ \{(b,x) : x \in b\} : b \subseteq a, b \neq \emptyset\}$.
|
||||||
|
@ -96,7 +96,7 @@
|
||||||
\end{itemize}
|
\end{itemize}
|
||||||
}
|
}
|
||||||
|
|
||||||
\end{refproof}
|
\end{yarefproof}
|
||||||
|
|
||||||
\begin{remark}
|
\begin{remark}
|
||||||
Over $\ZF$ the \yaref{ax:c} and \yaref{thm:zorn}
|
Over $\ZF$ the \yaref{ax:c} and \yaref{thm:zorn}
|
||||||
|
|
|
@ -19,7 +19,7 @@
|
||||||
or $\alpha \ni \beta$.
|
or $\alpha \ni \beta$.
|
||||||
\end{enumerate}
|
\end{enumerate}
|
||||||
\end{lemma}
|
\end{lemma}
|
||||||
\begin{refproof}{lem:7:ordinalfacts}
|
\begin{yarefproof}{lem:7:ordinalfacts}
|
||||||
\gist{
|
\gist{
|
||||||
We have already proved (a) before.
|
We have already proved (a) before.
|
||||||
|
|
||||||
|
@ -115,7 +115,7 @@
|
||||||
as $\alpha_0 \in \beta_0 \in \alpha_0$.
|
as $\alpha_0 \in \beta_0 \in \alpha_0$.
|
||||||
\end{subproof}
|
\end{subproof}
|
||||||
}{Long and tedious, but not many ideas.}
|
}{Long and tedious, but not many ideas.}
|
||||||
\end{refproof}
|
\end{yarefproof}
|
||||||
|
|
||||||
\begin{lemma}
|
\begin{lemma}
|
||||||
Let $X$ be a set of ordinals,
|
Let $X$ be a set of ordinals,
|
||||||
|
|
|
@ -137,7 +137,7 @@ so $|a| = \aleph_\beta$ for some $\beta \le |\alpha|$.
|
||||||
\]
|
\]
|
||||||
}{Then $\aleph_{\beta} \le \aleph_\alpha + \aleph_{\beta} \le \aleph_\alpha \cdot \aleph_\beta \le \aleph_\beta \cdot \aleph_\beta = \aleph_\beta$.}
|
}{Then $\aleph_{\beta} \le \aleph_\alpha + \aleph_{\beta} \le \aleph_\alpha \cdot \aleph_\beta \le \aleph_\beta \cdot \aleph_\beta = \aleph_\beta$.}
|
||||||
\end{proof}
|
\end{proof}
|
||||||
\begin{refproof}{thm:hessenberg}
|
\begin{yarefproof}{thm:hessenberg}
|
||||||
\gist{%
|
\gist{%
|
||||||
Define a well-order $<^\ast$ on $\OR \times \OR$ by setting
|
Define a well-order $<^\ast$ on $\OR \times \OR$ by setting
|
||||||
\[
|
\[
|
||||||
|
@ -218,7 +218,7 @@ so $|a| = \aleph_\beta$ for some $\beta \le |\alpha|$.
|
||||||
\end{itemize}
|
\end{itemize}
|
||||||
\end{itemize}
|
\end{itemize}
|
||||||
}
|
}
|
||||||
\end{refproof}
|
\end{yarefproof}
|
||||||
\gist{%
|
\gist{%
|
||||||
However, exponentiation of cardinals is far from trivial:
|
However, exponentiation of cardinals is far from trivial:
|
||||||
\begin{observe}
|
\begin{observe}
|
||||||
|
|
|
@ -37,7 +37,7 @@
|
||||||
Clearly this is club
|
Clearly this is club
|
||||||
but $\bigcap_{\beta < \kappa} C_\beta = \emptyset$.
|
but $\bigcap_{\beta < \kappa} C_\beta = \emptyset$.
|
||||||
\end{warning}
|
\end{warning}
|
||||||
\begin{refproof}{lem:clubintersection}
|
\begin{yarefproof}{lem:clubintersection}
|
||||||
\gist{%
|
\gist{%
|
||||||
First let $\alpha = 2$.
|
First let $\alpha = 2$.
|
||||||
Let $C, D \subseteq \kappa$
|
Let $C, D \subseteq \kappa$
|
||||||
|
@ -97,7 +97,7 @@
|
||||||
(we used $\cf(\kappa) > \alpha\cdot \omega$).
|
(we used $\cf(\kappa) > \alpha\cdot \omega$).
|
||||||
\end{itemize}
|
\end{itemize}
|
||||||
}
|
}
|
||||||
\end{refproof}
|
\end{yarefproof}
|
||||||
|
|
||||||
\begin{definition}
|
\begin{definition}
|
||||||
$F \subseteq \cP(a)$ is a \vocab{filter}
|
$F \subseteq \cP(a)$ is a \vocab{filter}
|
||||||
|
@ -172,7 +172,7 @@ We have shown (assuming \AxC to choose contained clubs):
|
||||||
then $\diagi_{\beta < \kappa} C_{\beta}$
|
then $\diagi_{\beta < \kappa} C_{\beta}$
|
||||||
contains a club.
|
contains a club.
|
||||||
\end{lemma}
|
\end{lemma}
|
||||||
\begin{refproof}{lem:diagiclub}
|
\begin{yarefproof}{lem:diagiclub}
|
||||||
% TODO THINK
|
% TODO THINK
|
||||||
\gist{
|
\gist{
|
||||||
Let us fix $\langle C_{\beta} : \beta < \alpha \rangle$.
|
Let us fix $\langle C_{\beta} : \beta < \alpha \rangle$.
|
||||||
|
@ -277,7 +277,7 @@ We have shown (assuming \AxC to choose contained clubs):
|
||||||
\end{itemize}
|
\end{itemize}
|
||||||
|
|
||||||
}
|
}
|
||||||
\end{refproof}
|
\end{yarefproof}
|
||||||
\begin{remark}+
|
\begin{remark}+
|
||||||
$\diagi_{\beta < \kappa} C_{\beta}$ actually
|
$\diagi_{\beta < \kappa} C_{\beta}$ actually
|
||||||
\emph{is} a club,
|
\emph{is} a club,
|
||||||
|
|
|
@ -105,7 +105,7 @@ to be an elementary substructure of $V_\theta$.
|
||||||
\end{lemma}
|
\end{lemma}
|
||||||
|
|
||||||
Let's do a second proof of \yaref{thm:fodor}.
|
Let's do a second proof of \yaref{thm:fodor}.
|
||||||
\begin{refproof}{thm:fodor}
|
\begin{yarefproof}{thm:fodor}
|
||||||
\gist{%
|
\gist{%
|
||||||
Fix $\theta > \kappa$ and look at $V_{\theta}$.
|
Fix $\theta > \kappa$ and look at $V_{\theta}$.
|
||||||
|
|
||||||
|
@ -151,7 +151,7 @@ Let's do a second proof of \yaref{thm:fodor}.
|
||||||
such that $X_\xi \cap \kappa = \xi$
|
such that $X_\xi \cap \kappa = \xi$
|
||||||
for all $\xi \in C$.
|
for all $\xi \in C$.
|
||||||
\end{claim}
|
\end{claim}
|
||||||
\begin{refproof}{thm:fodor:p2:c1}
|
\begin{yarefproof}{thm:fodor:p2:c1}
|
||||||
Write $C = \{\xi < \kappa:X_\xi \cap \kappa = \xi\}$.
|
Write $C = \{\xi < \kappa:X_\xi \cap \kappa = \xi\}$.
|
||||||
Trivially $C$ is closed.
|
Trivially $C$ is closed.
|
||||||
Let us show that $C$ is unbounded in $\kappa$.
|
Let us show that $C$ is unbounded in $\kappa$.
|
||||||
|
@ -171,7 +171,7 @@ Let's do a second proof of \yaref{thm:fodor}.
|
||||||
\label{thm:fodor:p2:c1.1}
|
\label{thm:fodor:p2:c1.1}
|
||||||
$\xi \in C$, i.e.~$X_\xi \cap \kappa = \xi$.
|
$\xi \in C$, i.e.~$X_\xi \cap \kappa = \xi$.
|
||||||
\end{claim}
|
\end{claim}
|
||||||
\begin{refproof}{thm:fodor:p2:c1.1}
|
\begin{yarefproof}{thm:fodor:p2:c1.1}
|
||||||
If $\eta < \xi$,
|
If $\eta < \xi$,
|
||||||
then $\eta < \xi_n$ for some $n$
|
then $\eta < \xi_n$ for some $n$
|
||||||
and then $\eta \in \xi_n \subseteq X_{\xi_n} \subseteq X_{\xi}$.
|
and then $\eta \in \xi_n \subseteq X_{\xi_n} \subseteq X_{\xi}$.
|
||||||
|
@ -180,8 +180,8 @@ Let's do a second proof of \yaref{thm:fodor}.
|
||||||
Then $\eta \in X_{\xi_n}$ for some $n < \omega$,
|
Then $\eta \in X_{\xi_n}$ for some $n < \omega$,
|
||||||
so $\eta < \xi_{n+1} < \xi$,
|
so $\eta < \xi_{n+1} < \xi$,
|
||||||
hence $X_{\xi} \cap \kappa \subseteq \xi$.
|
hence $X_{\xi} \cap \kappa \subseteq \xi$.
|
||||||
\end{refproof}
|
\end{yarefproof}
|
||||||
\end{refproof}
|
\end{yarefproof}
|
||||||
Now let $\alpha \in S \cap C$,
|
Now let $\alpha \in S \cap C$,
|
||||||
i.e.~$X_\alpha \prec V_{\theta}$
|
i.e.~$X_\alpha \prec V_{\theta}$
|
||||||
and $\alpha = X_{\alpha} \cap \kappa$.
|
and $\alpha = X_{\alpha} \cap \kappa$.
|
||||||
|
@ -280,4 +280,4 @@ Let's do a second proof of \yaref{thm:fodor}.
|
||||||
\end{itemize}
|
\end{itemize}
|
||||||
\end{itemize}
|
\end{itemize}
|
||||||
}
|
}
|
||||||
\end{refproof}
|
\end{yarefproof}
|
||||||
|
|
|
@ -101,7 +101,7 @@ one cofinality.
|
||||||
|
|
||||||
|
|
||||||
|
|
||||||
\begin{refproof}{thm:solovay}%
|
\begin{yarefproof}{thm:solovay}%
|
||||||
\gist{%
|
\gist{%
|
||||||
\footnote{``This is one of the arguments where it is certainly worth it to look at it again.''}
|
\footnote{``This is one of the arguments where it is certainly worth it to look at it again.''}
|
||||||
We will only prove this for $\aleph_1$.
|
We will only prove this for $\aleph_1$.
|
||||||
|
@ -253,7 +253,7 @@ one cofinality.
|
||||||
\item $S_0 \coloneqq T_0 \cup \left( S \setminus \bigcup_{j > 0} T_j \right)$, $S_i \coloneqq T_i$.
|
\item $S_0 \coloneqq T_0 \cup \left( S \setminus \bigcup_{j > 0} T_j \right)$, $S_i \coloneqq T_i$.
|
||||||
\end{itemize}
|
\end{itemize}
|
||||||
}
|
}
|
||||||
\end{refproof}
|
\end{yarefproof}
|
||||||
\gist{%
|
\gist{%
|
||||||
We now want to do another application of \yaref{thm:fodor}.
|
We now want to do another application of \yaref{thm:fodor}.
|
||||||
Recall that $2^{\kappa} > \kappa$, in fact $\cf(2^{\kappa}) > \kappa$
|
Recall that $2^{\kappa} > \kappa$, in fact $\cf(2^{\kappa}) > \kappa$
|
||||||
|
|
|
@ -25,7 +25,7 @@ We will only prove
|
||||||
\end{remark}
|
\end{remark}
|
||||||
}{}
|
}{}
|
||||||
|
|
||||||
\begin{refproof}{thm:silver1}
|
\begin{yarefproof}{thm:silver1}
|
||||||
\gist{%
|
\gist{%
|
||||||
We need to count the number of $X \subseteq \aleph_{\omega_1}.$
|
We need to count the number of $X \subseteq \aleph_{\omega_1}.$
|
||||||
Let us fix $\langle f_\lambda : \lambda < \kappa \text{ an infinite cardinal} \rangle$
|
Let us fix $\langle f_\lambda : \lambda < \kappa \text{ an infinite cardinal} \rangle$
|
||||||
|
@ -274,4 +274,4 @@ We will only prove
|
||||||
\end{itemize}
|
\end{itemize}
|
||||||
}
|
}
|
||||||
|
|
||||||
\end{refproof}
|
\end{yarefproof}
|
||||||
|
|
|
@ -73,7 +73,7 @@ We shall prove:
|
||||||
\footnote{Being a cardinal is $\Pi_1$,
|
\footnote{Being a cardinal is $\Pi_1$,
|
||||||
so $M[h]$ cardinals are always $M$ cardinals.}
|
so $M[h]$ cardinals are always $M$ cardinals.}
|
||||||
\end{claim}
|
\end{claim}
|
||||||
\begin{refproof}{l23:c:2}
|
\begin{yarefproof}{l23:c:2}
|
||||||
Suppose not.
|
Suppose not.
|
||||||
Let $\kappa$ be minimal such that $M \models \text{``$\kappa$ is a cardinal''}$,
|
Let $\kappa$ be minimal such that $M \models \text{``$\kappa$ is a cardinal''}$,
|
||||||
but $M[h] \models \text{``$\kappa$ is not a cardinal''}$.
|
but $M[h] \models \text{``$\kappa$ is not a cardinal''}$.
|
||||||
|
@ -119,12 +119,12 @@ We shall prove:
|
||||||
But $|\lambda \times \omega| = |\lambda| = \lambda$,
|
But $|\lambda \times \omega| = |\lambda| = \lambda$,
|
||||||
so in $M$ there is a surjection $F' \colon \lambda \to \kappa$,
|
so in $M$ there is a surjection $F' \colon \lambda \to \kappa$,
|
||||||
but $\kappa$ is a cardinal in $M$ $\lightning$.
|
but $\kappa$ is a cardinal in $M$ $\lightning$.
|
||||||
\end{refproof}
|
\end{yarefproof}
|
||||||
|
|
||||||
\begin{refproof}{l23:c:1}
|
\begin{yarefproof}{l23:c:1}
|
||||||
Omitted.
|
Omitted.
|
||||||
% TODO combinatorial argument
|
% TODO combinatorial argument
|
||||||
\end{refproof}
|
\end{yarefproof}
|
||||||
|
|
||||||
|
|
||||||
|
|
||||||
|
|
|
@ -5,6 +5,48 @@
|
||||||
\RequirePackage{amstext}
|
\RequirePackage{amstext}
|
||||||
\RequirePackage{xspace}
|
\RequirePackage{xspace}
|
||||||
|
|
||||||
|
\newwrite\yaref@output
|
||||||
|
\immediate\openout\yaref@output=\jobname.yaref.json
|
||||||
|
\write\yaref@output{data = [}
|
||||||
|
|
||||||
|
\newcounter{yarefproof@depth}
|
||||||
|
\setcounter{yarefproof@depth}{0}
|
||||||
|
|
||||||
|
\edef\yaref@hastag{\string#}%
|
||||||
|
|
||||||
|
\let\yaref@oldlabel\label
|
||||||
|
\def\publicurl{https://josia-notes.users.abstractnonsen.se/w23-logic-2/logic2.pdf}
|
||||||
|
|
||||||
|
\newenvironment{yarefproof}[1]{%
|
||||||
|
\ifnum\the\value{yarefproof@depth}=0%
|
||||||
|
\global\def\yarefproof@current{#1}%
|
||||||
|
\fi%
|
||||||
|
\addtocounter{yarefproof@depth}{1}%
|
||||||
|
\begin{refproof}{#1}% Depth: \theyarefproof@depth
|
||||||
|
}{%
|
||||||
|
\end{refproof}%
|
||||||
|
\addtocounter{yarefproof@depth}{-1}%
|
||||||
|
%\ifnum\yarefproof@depth=0%
|
||||||
|
% \def\yarefproof@current{nothing}%
|
||||||
|
%\fi%
|
||||||
|
%\let\yarefproof@current=\undefined%
|
||||||
|
\ignorespacesafterend%
|
||||||
|
}
|
||||||
|
|
||||||
|
\newcommand{\yaref@writedependency}[1]{%
|
||||||
|
\ifnum\the\value{yarefproof@depth}=0%
|
||||||
|
% not in a proof environment
|
||||||
|
%\write\yaref@output{EDGE: #1 - \theyarefproof@depth}%
|
||||||
|
\else%
|
||||||
|
\ifcsname yarefproof@current\endcsname%
|
||||||
|
\write\yaref@output{{data: {id:"#1\yarefproof@current", source:"#1", target: "\yarefproof@current"}},}%
|
||||||
|
\else%
|
||||||
|
% in a proof env, but no label defined ???
|
||||||
|
%\write\yaref@output{{#1 - ERROR}}%
|
||||||
|
\fi%
|
||||||
|
\fi%
|
||||||
|
}
|
||||||
|
|
||||||
\newcommand{\yaref@text@large}[1]{%
|
\newcommand{\yaref@text@large}[1]{%
|
||||||
\ifcsname yaref@longlabel@#1\endcsname%
|
\ifcsname yaref@longlabel@#1\endcsname%
|
||||||
\hyperref[#1]{\csname yaref@longlabel@#1\endcsname\ (\ref*{#1})}%
|
\hyperref[#1]{\csname yaref@longlabel@#1\endcsname\ (\ref*{#1})}%
|
||||||
|
@ -30,14 +72,16 @@
|
||||||
}
|
}
|
||||||
|
|
||||||
\newcommand{\yalabel}[3]{%
|
\newcommand{\yalabel}[3]{%
|
||||||
|
\yaref@oldlabel{#3}%
|
||||||
\write\@auxout{\noexpand\expandafter\noexpand\gdef\noexpand\csname yaref@longlabel@#3\noexpand\endcsname{#1}}%
|
\write\@auxout{\noexpand\expandafter\noexpand\gdef\noexpand\csname yaref@longlabel@#3\noexpand\endcsname{#1}}%
|
||||||
\write\@auxout{\noexpand\expandafter\noexpand\gdef\noexpand\csname yaref@shortlabel@#3\noexpand\endcsname{#2}}%
|
\write\@auxout{\noexpand\expandafter\noexpand\gdef\noexpand\csname yaref@shortlabel@#3\noexpand\endcsname{#2}}%
|
||||||
|
\write\yaref@output{{data: {id: "#3", label: "#1", short: "#2", href: "\publicurl\yaref@hastag\getrefbykeydefault{#3}{anchor}{}"}},}%
|
||||||
\expandafter\gdef\csname yaref@longlabel@#3\endcsname{#1}%
|
\expandafter\gdef\csname yaref@longlabel@#3\endcsname{#1}%
|
||||||
\expandafter\gdef\csname yaref@shortlabel@#3\endcsname{#2}%
|
\expandafter\gdef\csname yaref@shortlabel@#3\endcsname{#2}%
|
||||||
\label{#3}%
|
|
||||||
}
|
}
|
||||||
|
|
||||||
\newcommand{\yaref}[1]{%
|
\newcommand{\yaref}[1]{%
|
||||||
|
\yaref@writedependency{#1}%
|
||||||
\relax\ifmmode%
|
\relax\ifmmode%
|
||||||
\mathchoice
|
\mathchoice
|
||||||
{\yaref@math@large{#1}} % display style
|
{\yaref@math@large{#1}} % display style
|
||||||
|
@ -50,9 +94,17 @@
|
||||||
}
|
}
|
||||||
% Force a small reference
|
% Force a small reference
|
||||||
\newcommand{\yarefs}[1]{%
|
\newcommand{\yarefs}[1]{%
|
||||||
|
%\yaref@writedependency{#1}%
|
||||||
\relax\ifmmode%
|
\relax\ifmmode%
|
||||||
\yaref@math@verysmall{#1}% scriptscript style
|
\yaref@math@verysmall{#1}% scriptscript style
|
||||||
\else%
|
\else%
|
||||||
\yaref@text@small{#1}\xspace%
|
\yaref@text@small{#1}\xspace%
|
||||||
\fi%
|
\fi%
|
||||||
}
|
}
|
||||||
|
\renewcommand{\label}[1]{%
|
||||||
|
\yaref@oldlabel{#1}%
|
||||||
|
% \getrefbykeydefault{#1}{name}{}
|
||||||
|
\write\yaref@output{{data: {id: "#1", label: "\getrefnumber{#1}", href: "\publicurl\yaref@hastag\getrefbykeydefault{#1}{anchor}{}"}},}%
|
||||||
|
}
|
||||||
|
|
||||||
|
\AtEndDocument{\write\yaref@output{{}]}}
|
||||||
|
|
Loading…
Reference in a new issue