lecture 21
Some checks failed
Build latex and deploy / checkout (push) Failing after 15m17s

This commit is contained in:
Josia Pietsch 2024-01-18 15:43:47 +01:00
parent ca24c68790
commit 946da98a04
Signed by: josia
GPG key ID: E70B571D66986A2D
4 changed files with 167 additions and 1 deletions

View file

@ -225,7 +225,7 @@ We have shown (assuming \AxC to choose contained clubs):
$\lambda \not\in D_\alpha$.
Since $D_\alpha$ is closed,
we get $\sup(D_{\alpha} \cap \lambda) < \lambda$.
In particular $\sup (\lambda \cap\diagi_{\beta < \kappa} D_{\beta}) \le \max (\alpha ,\sup(D_\alpha \cap \lambda) < \lambda$.
In particular $\sup (\lambda \cap\diagi_{\beta < \kappa} D_{\beta}) \le \alpha \cup \sup(D_\alpha \cap \lambda) < \lambda$.
\end{remark}
\begin{definition}

View file

@ -23,9 +23,13 @@ and $\forall x \in y.~\phi$ abbreviates $\forall x.~x \in y \to \phi$.
If $\phi(x_0,\ldots,x_m) \in \Sigma_n$,
then $(\forall x_0.~\ldots\forall x_m.~\phi(x_0,\ldots,x_m)) \in \Pi_{n+1}$.
If $\ZFC \models \phi \leftrightarrow \psi$
and $\phi \in \Sigma_n$, then $\psi \in \Sigma_n$.
If $\phi(x_0,\ldots,x_m) \in \Pi_n$,
then $(\exists x_0.~\ldots\exists x_m.~\phi(x_0,\ldots,x_m) \in \Sigma_{n+1}$.
If $\ZFC \models \phi \leftrightarrow \psi$
and $\phi \in \Pi_n$, then $\psi \in \Pi_n$.
$\Delta_n \coloneqq \Sigma_n \cap \Pi_n$.
\end{definition}

161
inputs/lecture_21.tex Normal file
View file

@ -0,0 +1,161 @@
\lecture{21}{2024-01-18}{}
\begin{goal}
We want to show that certain statements are consistent with $\ZFC$
(or $\ZF$), for instance $\CH$.
We start with a model $M$ of $\ZFC$.
Usually we want $M$ to be transitive.
We want to enlarge $M$ to get a bigger model,
where our desired statement holds,
i.e.~add more reals to violate $\CH$.
However we need to do this in a somewhat controlled way,
so we can't just do it the way one builds field extensions.
In particular, when trying to violate $\CH$ we need to make sure that
we don't collapse cardinals.
\end{goal}
\begin{remark}
The idea behind forcing is clever.
Unfortunately an easy ``how could I have come up with this myself''-approach
does not seem to exist.
\end{remark}
\begin{remark}
How can a countable transitive model $M$ even exist?
$M$ believes some statements that are wrong from the outside perspective.
For example there exists $\aleph_1^M \in M$
such that $M \models x = \aleph_1$.
$\aleph_1^M$ is indeed an ordinal (since being an ordinal is a $\Sigma_0$-statement).
However $\aleph_1^M$ is countable, since $M$ is countable
and transitive.
This is fine.
(Note that ``$\aleph_1^M$ is uncountable'' is a $\Pi_1$-statement.)
\end{remark}
\begin{idea}[The method of \vocab{forcing}]
Start with $M$, a countable transitive model of $\ZFC$
and let $\mathbb{P} \in M$ be a partial order,
where $p \le q$ means that $p$ has ``more information''
than $q$.
A filter $g \subseteq \mathbb{P}$ is $\mathbb{P}$-generic over $M$
iff $g \cap D \neq \emptyset$ for all dense $D \subseteq \mathbb{P}$,
$D \in M$.
Next steps:
\begin{enumerate}[(1)]
\item Define the \vocab{forcing extension} $M[g]$.
\item Show that $M[g] \models \ZFC$.
\item Determine other facts about (the theory of) $M[g]$.
This depends on the partial order $\mathbb{P}$ we chose
in the beginning (and maybe $M$).
\end{enumerate}
\end{idea}
\begin{example}[Prototypical example]
Let $\bP = 2^{< \omega}, p \le q \mathop{:\iff} p \supseteq q$ be Cohen forcing,
often denoted $\bC$.
Let $M$ be a countable transitive model of $\ZFC$.
Since the definition of $\bC$ is simple enough,
$\bC \in M$.
Let $g$ be $\bC$-generic over $M$.
\begin{claim}
\label{ex:cohen:c1}
For each $n \in \omega$,
the set $D_n \coloneqq \{ p \in \bC : n \in \dom(p)\}$
is dense.
\end{claim}
\begin{subproof}
This is trivial.
\end{subproof}
\begin{claim}
\label{ex:cohen:c2}
$D_n \in M$.
\end{claim}
\begin{subproof}
The definition of $D_n$ is absolute.
\end{subproof}
\begin{claim}
\label{ex:cohen:c3}
If $p,q \in g \cap D_n$,
then $p(n) = q(n)$.
\end{claim}
\begin{subproof}
$g$ is a filter, so $p$ and $q$ are compatible.
$p,q \in D_n$ makes sure that $p(n)$ and $q(n)$ are defined.
\end{subproof}
Let $x = \bigcup g$.
By \yaref{ex:cohen:c3}, $x \in 2^{\le \omega}$.
By \yaref{ex:cohen:c1} and \yaref{ex:cohen:c2},
we have $g \cap D_n \neq \emptyset$ for all $n < \omega$,
hence $n \in \dom(x)$ for all $n < \omega$.
So $x \in 2^{\omega}$.
\begin{claim}
Let $z \in 2^{\omega}$, $z \in M$.
Then $D^z = \{p \in \bC : \exists n \in \dom(p) .~p(n) \neq z(n)\} $
is dense.
\end{claim}
\begin{subproof}
Trivial.
\end{subproof}
\begin{claim}
$D^z \in M$ for all $z \in 2^{< \omega}$ with $z \in M$.
Therefore, $g \cap D^z \neq \emptyset$ for all $z \in M$,
$z\colon 2^{<\omega}$.
Hence $x \neq z$ for all $z \in M$, $z \in 2^{< \omega}$.
In other words $x \not\in M$.
\end{claim}
The new real $x$ does not do too much damage to $M$
when adding it.\footnote{We still need to make this precise.}
(Some reals would completely kill the model.)
Now let $\alpha$ be an ordinal in $M$.
Let
\begin{IEEEeqnarray*}{rCll}
\bC(\alpha) &\coloneqq& \{p \colon &\text{$p$ is a function with domain $\alpha$,}\\
&&&\text{$p(\xi) \in \bC$ for all $\xi < \alpha$,}\\
&&&\text{$\{\xi < \alpha : p(\xi) \neq \emptyset\}$ is finite}\}
\end{IEEEeqnarray*}
($\alpha$ many copies of $\bC$ with \vocab{finite support}).
For $p, q \in \bC(\alpha)$ define $p \le q :\iff \forall \xi < \alpha .~p(\xi) \supseteq q(\xi)$.
We have $\bC(\alpha) \in M$
Let $g$ be $\bC(\alpha)$-generic over $M$.
Let $x_\xi = \bigcup \{p(\xi) : p \in g\}$
for $\xi < \alpha$.
$x_\xi \in 2^{ \omega}$:
For each $n < \omega$ and $\xi < \alpha$,
\[
D_{n,\xi} \coloneqq \{ p \in \bC(\alpha) : n \in \dom(p(\xi))\} \in M
\]
and $D_{n,\xi}$ is dense.
\begin{claim}
For all $\xi, \eta < \alpha$, $\xi \neq \eta$,
\[
D^{\xi, \eta} \coloneqq \{ p \in \bC(\alpha) : \exists n \in \dom(p(\xi)) \cap \dom(p(\eta)) .~
p(\xi)(n) \neq p(\eta)(n)\}
\]
we have that $D^{\xi, \eta} \in M$
and is $D^{\xi, \eta}$ dense.
\end{claim}
Therefore if $\xi \neq \eta$, $x_\xi \neq x_\eta$.
Currently this is not very exciting,
since we only showed that for a countable transitive model $M$,
there is a countable set of reals not contained in $M$.
The interesting point will be, that we can actually add these reals
to $M$.
\end{example}
Next steps:
\begin{itemize}
\item Make sense of $M[g]$.
\end{itemize}

View file

@ -44,6 +44,7 @@
\input{inputs/lecture_18}
\input{inputs/lecture_19}
\input{inputs/lecture_20}
\input{inputs/lecture_21}
\cleardoublepage