This commit is contained in:
parent
ca24c68790
commit
946da98a04
4 changed files with 167 additions and 1 deletions
|
@ -225,7 +225,7 @@ We have shown (assuming \AxC to choose contained clubs):
|
|||
$\lambda \not\in D_\alpha$.
|
||||
Since $D_\alpha$ is closed,
|
||||
we get $\sup(D_{\alpha} \cap \lambda) < \lambda$.
|
||||
In particular $\sup (\lambda \cap\diagi_{\beta < \kappa} D_{\beta}) \le \max (\alpha ,\sup(D_\alpha \cap \lambda) < \lambda$.
|
||||
In particular $\sup (\lambda \cap\diagi_{\beta < \kappa} D_{\beta}) \le \alpha \cup \sup(D_\alpha \cap \lambda) < \lambda$.
|
||||
\end{remark}
|
||||
|
||||
\begin{definition}
|
||||
|
|
|
@ -23,9 +23,13 @@ and $\forall x \in y.~\phi$ abbreviates $\forall x.~x \in y \to \phi$.
|
|||
|
||||
If $\phi(x_0,\ldots,x_m) \in \Sigma_n$,
|
||||
then $(\forall x_0.~\ldots\forall x_m.~\phi(x_0,\ldots,x_m)) \in \Pi_{n+1}$.
|
||||
If $\ZFC \models \phi \leftrightarrow \psi$
|
||||
and $\phi \in \Sigma_n$, then $\psi \in \Sigma_n$.
|
||||
|
||||
If $\phi(x_0,\ldots,x_m) \in \Pi_n$,
|
||||
then $(\exists x_0.~\ldots\exists x_m.~\phi(x_0,\ldots,x_m) \in \Sigma_{n+1}$.
|
||||
If $\ZFC \models \phi \leftrightarrow \psi$
|
||||
and $\phi \in \Pi_n$, then $\psi \in \Pi_n$.
|
||||
|
||||
$\Delta_n \coloneqq \Sigma_n \cap \Pi_n$.
|
||||
\end{definition}
|
||||
|
|
161
inputs/lecture_21.tex
Normal file
161
inputs/lecture_21.tex
Normal file
|
@ -0,0 +1,161 @@
|
|||
\lecture{21}{2024-01-18}{}
|
||||
|
||||
\begin{goal}
|
||||
We want to show that certain statements are consistent with $\ZFC$
|
||||
(or $\ZF$), for instance $\CH$.
|
||||
|
||||
We start with a model $M$ of $\ZFC$.
|
||||
Usually we want $M$ to be transitive.
|
||||
|
||||
We want to enlarge $M$ to get a bigger model,
|
||||
where our desired statement holds,
|
||||
i.e.~add more reals to violate $\CH$.
|
||||
|
||||
However we need to do this in a somewhat controlled way,
|
||||
so we can't just do it the way one builds field extensions.
|
||||
In particular, when trying to violate $\CH$ we need to make sure that
|
||||
we don't collapse cardinals.
|
||||
\end{goal}
|
||||
\begin{remark}
|
||||
The idea behind forcing is clever.
|
||||
Unfortunately an easy ``how could I have come up with this myself''-approach
|
||||
does not seem to exist.
|
||||
\end{remark}
|
||||
\begin{remark}
|
||||
How can a countable transitive model $M$ even exist?
|
||||
|
||||
$M$ believes some statements that are wrong from the outside perspective.
|
||||
For example there exists $\aleph_1^M \in M$
|
||||
such that $M \models x = \aleph_1$.
|
||||
$\aleph_1^M$ is indeed an ordinal (since being an ordinal is a $\Sigma_0$-statement).
|
||||
However $\aleph_1^M$ is countable, since $M$ is countable
|
||||
and transitive.
|
||||
This is fine.
|
||||
(Note that ``$\aleph_1^M$ is uncountable'' is a $\Pi_1$-statement.)
|
||||
\end{remark}
|
||||
|
||||
\begin{idea}[The method of \vocab{forcing}]
|
||||
Start with $M$, a countable transitive model of $\ZFC$
|
||||
and let $\mathbb{P} \in M$ be a partial order,
|
||||
where $p \le q$ means that $p$ has ``more information''
|
||||
than $q$.
|
||||
|
||||
A filter $g \subseteq \mathbb{P}$ is $\mathbb{P}$-generic over $M$
|
||||
iff $g \cap D \neq \emptyset$ for all dense $D \subseteq \mathbb{P}$,
|
||||
$D \in M$.
|
||||
|
||||
Next steps:
|
||||
\begin{enumerate}[(1)]
|
||||
\item Define the \vocab{forcing extension} $M[g]$.
|
||||
\item Show that $M[g] \models \ZFC$.
|
||||
\item Determine other facts about (the theory of) $M[g]$.
|
||||
This depends on the partial order $\mathbb{P}$ we chose
|
||||
in the beginning (and maybe $M$).
|
||||
\end{enumerate}
|
||||
\end{idea}
|
||||
|
||||
\begin{example}[Prototypical example]
|
||||
Let $\bP = 2^{< \omega}, p \le q \mathop{:\iff} p \supseteq q$ be Cohen forcing,
|
||||
often denoted $\bC$.
|
||||
|
||||
Let $M$ be a countable transitive model of $\ZFC$.
|
||||
Since the definition of $\bC$ is simple enough,
|
||||
$\bC \in M$.
|
||||
Let $g$ be $\bC$-generic over $M$.
|
||||
|
||||
\begin{claim}
|
||||
\label{ex:cohen:c1}
|
||||
For each $n \in \omega$,
|
||||
the set $D_n \coloneqq \{ p \in \bC : n \in \dom(p)\}$
|
||||
is dense.
|
||||
\end{claim}
|
||||
\begin{subproof}
|
||||
This is trivial.
|
||||
\end{subproof}
|
||||
\begin{claim}
|
||||
\label{ex:cohen:c2}
|
||||
$D_n \in M$.
|
||||
\end{claim}
|
||||
\begin{subproof}
|
||||
The definition of $D_n$ is absolute.
|
||||
\end{subproof}
|
||||
\begin{claim}
|
||||
\label{ex:cohen:c3}
|
||||
If $p,q \in g \cap D_n$,
|
||||
then $p(n) = q(n)$.
|
||||
\end{claim}
|
||||
\begin{subproof}
|
||||
$g$ is a filter, so $p$ and $q$ are compatible.
|
||||
$p,q \in D_n$ makes sure that $p(n)$ and $q(n)$ are defined.
|
||||
\end{subproof}
|
||||
Let $x = \bigcup g$.
|
||||
By \yaref{ex:cohen:c3}, $x \in 2^{\le \omega}$.
|
||||
By \yaref{ex:cohen:c1} and \yaref{ex:cohen:c2},
|
||||
we have $g \cap D_n \neq \emptyset$ for all $n < \omega$,
|
||||
hence $n \in \dom(x)$ for all $n < \omega$.
|
||||
So $x \in 2^{\omega}$.
|
||||
|
||||
\begin{claim}
|
||||
Let $z \in 2^{\omega}$, $z \in M$.
|
||||
Then $D^z = \{p \in \bC : \exists n \in \dom(p) .~p(n) \neq z(n)\} $
|
||||
is dense.
|
||||
\end{claim}
|
||||
\begin{subproof}
|
||||
Trivial.
|
||||
\end{subproof}
|
||||
\begin{claim}
|
||||
$D^z \in M$ for all $z \in 2^{< \omega}$ with $z \in M$.
|
||||
Therefore, $g \cap D^z \neq \emptyset$ for all $z \in M$,
|
||||
$z\colon 2^{<\omega}$.
|
||||
Hence $x \neq z$ for all $z \in M$, $z \in 2^{< \omega}$.
|
||||
In other words $x \not\in M$.
|
||||
\end{claim}
|
||||
|
||||
The new real $x$ does not do too much damage to $M$
|
||||
when adding it.\footnote{We still need to make this precise.}
|
||||
(Some reals would completely kill the model.)
|
||||
|
||||
Now let $\alpha$ be an ordinal in $M$.
|
||||
Let
|
||||
\begin{IEEEeqnarray*}{rCll}
|
||||
\bC(\alpha) &\coloneqq& \{p \colon &\text{$p$ is a function with domain $\alpha$,}\\
|
||||
&&&\text{$p(\xi) \in \bC$ for all $\xi < \alpha$,}\\
|
||||
&&&\text{$\{\xi < \alpha : p(\xi) \neq \emptyset\}$ is finite}\}
|
||||
\end{IEEEeqnarray*}
|
||||
($\alpha$ many copies of $\bC$ with \vocab{finite support}).
|
||||
|
||||
For $p, q \in \bC(\alpha)$ define $p \le q :\iff \forall \xi < \alpha .~p(\xi) \supseteq q(\xi)$.
|
||||
We have $\bC(\alpha) \in M$
|
||||
|
||||
Let $g$ be $\bC(\alpha)$-generic over $M$.
|
||||
Let $x_\xi = \bigcup \{p(\xi) : p \in g\}$
|
||||
for $\xi < \alpha$.
|
||||
$x_\xi \in 2^{ \omega}$:
|
||||
For each $n < \omega$ and $\xi < \alpha$,
|
||||
\[
|
||||
D_{n,\xi} \coloneqq \{ p \in \bC(\alpha) : n \in \dom(p(\xi))\} \in M
|
||||
\]
|
||||
and $D_{n,\xi}$ is dense.
|
||||
|
||||
\begin{claim}
|
||||
For all $\xi, \eta < \alpha$, $\xi \neq \eta$,
|
||||
\[
|
||||
D^{\xi, \eta} \coloneqq \{ p \in \bC(\alpha) : \exists n \in \dom(p(\xi)) \cap \dom(p(\eta)) .~
|
||||
p(\xi)(n) \neq p(\eta)(n)\}
|
||||
\]
|
||||
we have that $D^{\xi, \eta} \in M$
|
||||
and is $D^{\xi, \eta}$ dense.
|
||||
\end{claim}
|
||||
Therefore if $\xi \neq \eta$, $x_\xi \neq x_\eta$.
|
||||
|
||||
Currently this is not very exciting,
|
||||
since we only showed that for a countable transitive model $M$,
|
||||
there is a countable set of reals not contained in $M$.
|
||||
The interesting point will be, that we can actually add these reals
|
||||
to $M$.
|
||||
\end{example}
|
||||
|
||||
Next steps:
|
||||
\begin{itemize}
|
||||
\item Make sense of $M[g]$.
|
||||
\end{itemize}
|
|
@ -44,6 +44,7 @@
|
|||
\input{inputs/lecture_18}
|
||||
\input{inputs/lecture_19}
|
||||
\input{inputs/lecture_20}
|
||||
\input{inputs/lecture_21}
|
||||
|
||||
|
||||
\cleardoublepage
|
||||
|
|
Loading…
Reference in a new issue