automatic commit jrpie-t490

This commit is contained in:
Josia Pietsch 2023-12-19 03:43:49 +01:00
commit 76cce468aa
Signed by: josia
GPG Key ID: E70B571D66986A2D
4 changed files with 236 additions and 5 deletions

View File

@ -2,15 +2,21 @@ These are my notes on the lecture Logic II
taught by \textsc{Ralf Schindler} taught by \textsc{Ralf Schindler}
in winter 23/24 at the University Münster. in winter 23/24 at the University Münster.
Many thanks to \textsc{Fakhar Ahmad}, \textsc{Mirko Bartsch} and \textsc{Shiguma Kawamoto}
for providing notes for lectures I was unable attend!
If you find errors or want to improve something,
please send me a message:\\
\texttt{lecturenotes@jrpie.de}.
\begin{warning} \begin{warning}
This is not an official script. This is not an official script.
%The official lecture notes can be found on %The official lecture notes can be found on
% \href{TODO}{here}. % \href{TODO}{here}.
\end{warning} \end{warning}
If you find errors or want to improve something, % Many thanks to \textsc{Mirko Bartsch} for feedback and spotting mistakes!
please send me a message:\\
\texttt{lecturenotes@jrpie.de}.
These notes follow the way the material was presented in the lecture rather These notes follow the way the material was presented in the lecture rather
closely. Additions (e.g.~from exercise sheets) closely. Additions (e.g.~from exercise sheets)

View File

@ -130,6 +130,7 @@
The next goal is to show the following: The next goal is to show the following:
(However the method might be more interesting than the result) (However the method might be more interesting than the result)
\begin{theorem}[Silver] \begin{theorem}[Silver]
\yalabel{Silver's Theorem}{Silver}{thm:silver}
If $2^{\aleph_\alpha} = \aleph_{\alpha + 1}$ If $2^{\aleph_\alpha} = \aleph_{\alpha + 1}$
for all $\alpha < \omega_1$, for all $\alpha < \omega_1$,
then $2^{\aleph_{\omega_1}} = \aleph_{\omega_1 + 1}$. then $2^{\aleph_{\omega_1}} = \aleph_{\omega_1 + 1}$.

View File

@ -1,3 +1,4 @@
<<<<<<< HEAD
\lecture{16}{2023-12-11}{} \lecture{16}{2023-12-11}{}
Recall \yaref{thm:fodor}. Recall \yaref{thm:fodor}.
@ -238,3 +239,226 @@ then it is true at $\kappa$.
The proof of \yalabel{thm:silver} is quite elementary, The proof of \yalabel{thm:silver} is quite elementary,
so we will do it now, but the statement can only be fully appreciated later. so we will do it now, but the statement can only be fully appreciated later.
||||||| ede97ee
=======
\lecture{16}{2023-12-14}{Silver's Theorem}
We now want to prove \yaref{thm:silver}.
More generally, if $\kappa$ is a singular cardinal of uncountable cofinality
such that $2^{\lambda} = \lambda^+$ for all $\lambda < \kappa$,
then $2^{\kappa} = \kappa^+$.
\begin{remark}
The hypothesis of \yaref{thm:silver}
is consistent with $\ZFC$.
\end{remark}
We will only proof \yaref{thm:silver} in the special case that $\kappa = \aleph_{\omega_1}$.
The general proof differs only in notation.
\begin{remark}
It is important that the cofinality is uncountable.
For example it is consistent
with $\ZFC$ that
$2^{\aleph_n} = \aleph_{n+1}$ for all $n < \omega$
but at the same time $2^{\aleph_{\omega}} = \aleph_{\omega + 2}$.
\end{remark}
\begin{refproof}{thm:silver}
We need to count the number of $X \subseteq \aleph_{\omega_1}.$
Let us fix $\langle f_\lambda : \lambda < \kappa \text{ an infinite cardinal} \rangle$
such that $f_{\lambda}\colon \cP(\lambda) \to \lambda^+$
is bijective for each $\lambda < \kappa$.
For $X \subseteq \aleph_{\omega_1}$
define
\begin{IEEEeqnarray*}{rCl}
f_X\colon \omega_1 &\longrightarrow & \aleph_{\omega_1} \\
\alpha &\longmapsto & f_{\aleph_\alpha}(X \cap \aleph_\alpha).
\end{IEEEeqnarray*}
\begin{claim}
For $X,Y \subseteq \aleph_{\omega_1}$
it is $X \neq Y \iff f_X \neq f_Y$.
\end{claim}
\begin{subproof}
$X \neq Y$ holds iff $X \cap \aleph_\alpha \neq Y \cap \aleph_\alpha$
for some $\alpha < \omega_1$.
But then $f_X(\alpha) \neq f_Y(\alpha)$.
\end{subproof}
For $X, Y \subseteq \aleph_{\omega_1}$
write $X \le Y$ iff
\[
\{\alpha < \omega_1 : f_X(\alpha) \le f_Y(\alpha)\}
\]
is stationary.
\begin{claim}
For all $X,Y \subseteq \aleph_{\omega_1}$,
$X \le Y$ or $Y \le X$.
\end{claim}
\begin{subproof}
Suppose that $X \nleq Y$ and $Y \nleq X$.
Then there are clubs $C,D \subseteq \omega_1$
such that
\[
C \cap \{\alpha < \omega_1 : f_X(\alpha) \le f_Y(\alpha)\} = \emptyset
\]
and
\[
D \cap \{\alpha < \omega_1 : f_Y(\alpha) \le f_X(\alpha)\} = \emptyset.
\]
Note that $C \cap D$ is a club.
Take some $\alpha \in C \cap D$.
But then $f_X(\alpha) \le f_Y(\alpha)$
or $f_{Y}(\alpha) \le f_X(\alpha)$ $\lightning$
\end{subproof}
\begin{claim}
\label{thm:silver:p:c3}.
Let $X \subseteq \aleph_{\omega_1}$.
Then
\[
|\{Y \subseteq \aleph_{\omega_1} : Y \le X\}| \le \aleph_{\omega_1}.
\]
\end{claim}
\begin{subproof}
Write $A \coloneqq \{Y \subseteq X_{\omega_1} : Y \le X\}$.
Suppose $|A| \ge \aleph_{\omega_1 + 1}$.
For each $Y \in A$
we have that
\[
S_Y \coloneqq \{\alpha : f_Y(\alpha) \le f_X(\alpha)\}
\]
is a stationary subset of $\omega_1$.
Since by assumption $2^{\aleph_1} = \aleph_2$,
there are at most $\aleph_2$ such $S_Y$.
Suppose that for each $S \subseteq \omega_1$,
\[
|\{Y \in A : S_Y = S\}| < \aleph_{\omega_1 + 1}.
\]
Then $A$ is the union of $\le \aleph_2$ many
sets of size $< \aleph_{\omega_1 + 1}$.
Thus this is a contradiction since $\aleph_{\omega_1 + 1}$
is regular.
So there exists a stationary $S \subseteq \omega_1$
such that
\[
A_1 = \{Y \subseteq \aleph_{\omega_1} : S_Y = S\}
\]
has cardinality $\aleph_{\omega_1 + 1}$.
We have
\[f_Y(\alpha) \le f_X(\alpha) = f_{\aleph_\alpha}(X \cap \aleph_\alpha)< \aleph_{\alpha + 1}\]
for all $Y \in A_1, \alpha \in S$.
Let $\langle g_{\alpha} : \alpha \in S \rangle$
be such that $g_\alpha\colon \aleph_{\alpha} \twoheadrightarrow f_X(\alpha) + 1$
is a surjection for all $\alpha \in S$.
Then for each $Y \in A_1$ define
\begin{IEEEeqnarray*}{rCl}
\overline{f}_Y\colon S &\longrightarrow & \aleph_{\omega_1} \\
\alpha &\longmapsto & \min \{\xi : g_\alpha(\xi) = f_Y(\alpha)\}.
\end{IEEEeqnarray*}
Let $D$ be the set of all limit ordinals $< \omega_1$.
Then $S \cap D$ is a stationary set:
If $C$ is a club, then $C \cap D$ is a club,
hence $(S \cap D) \cap C = S \cap (D \cap C) \neq \emptyset$.
Now to each $Y \in A$ we may associate
a regressive function
\begin{IEEEeqnarray*}{rCl}
h_Y \colon S \cap D &\longrightarrow & \omega_1 \\
\alpha &\longmapsto & \min \{\beta < \alpha : \overline{f}_Y(\alpha) < \aleph_{\beta}\}.
\end{IEEEeqnarray*}
$h_Y$ is regressive, so by \yaref{thm:fodor}
there is a stationary $T_Y \subseteq S \cap D$ on which $h_Y$ is constant.
By an argument as before,
there is a stationary $T \subseteq S \cap D$ such that
\[
|A_2| = \aleph_{\omega_1 +1},
\]
where $A_2 \coloneqq \{Y \in A_1 : T_Y = T\}$.
Let $\beta < \omega_1$ be such that for all $Y \in A_2$
and for all $\alpha \in T$, $h_Y(\alpha) = \beta$.
Then $\overline{f}_Y(\alpha) < \aleph_\beta$
for all $Y \in A_2$ and $\alpha \in T$.
There are at most $\aleph_\beta^{\aleph_1}$ many functions
$T \to \aleph_\beta$,
but
\begin{IEEEeqnarray*}{rCl}
\aleph_\beta^{\aleph_1} &\le & 2^{\aleph_\beta \cdot \aleph_1}\\
&=& \aleph_{\beta+1} \cdot \aleph_2\\
&<& \aleph_{\omega_1}.
\end{IEEEeqnarray*}
Suppose that for each function
$\tilde{f}\colon T \to \aleph_\beta$
there are $< \aleph_{\omega_1 + 1}$ many $Y \in A_2$
with $\overline{f}_Y \cap T = \tilde{f}$.
Then $A_2$ is the union of $<\aleph_{\omega_1}$
many sets each of size $< \aleph_{\omega_1 + 1}$ $\lightning$.
Hence for some $\tilde{f}\colon T \to \aleph_\beta$,
\[
|A_3| = \aleph_{\omega_1 + 1},
\]
where $A_3 = \{Y \in A_2 : \overline{f}_Y\defon{T} = \tilde{f}\}$.
Let $Y, Y' \in A_3$ and $\alpha \in T$.
Then
\[
\overline{f}_Y(\alpha) = \overline{f}_{Y'}(\alpha),
\]
hence
\[
f_{\aleph_\alpha}(Y \cap \aleph_\alpha) = f_Y(\alpha) = f_{Y'}(\alpha) = f_{\aleph_\alpha}(Y' \cap \aleph_\alpha),
\]
i.e.~$Y \cap \aleph_\alpha = Y' \cap \aleph_\alpha$.
Since $T$ is cofinal in $\omega_1$,
it follows that $Y = Y'$.
So $|A_3| \le 1 \lightning$
\end{subproof}
Let us now define a sequence $\langle X_i : i < \aleph_{\omega_1 + 1} \rangle$
of subsets of $\aleph_{\omega_1 + 1}$ as follows:
Suppose $\langle X_j : j < i \rangle$
were already chosen.
Consider
\[
\{Y \subseteq \aleph_{\omega_1} : \exists j < i.~Y \le X_j\}
= \bigcup_{j < i} \{Y \subseteq \aleph_{\omega_1} : Y \le X_j\}.
\]
This set has cardinality $\le \aleph_{\omega_1}$
by \yaref{thm:silver:p:c3}.
Let $X_i \subseteq \aleph_{\omega_1}$
be such that $X_i \nleq X_j$ for all $j < i$.
The set
\[
\{Y \subseteq \aleph_{\omega_1} : \exists i < \aleph_{\omega_1 + 1} .~Y \le X_i\}
= \bigcup_{i < \aleph_{\omega_1 + 1}} \{Y \subseteq \aleph_{\omega_1} : Y \le X_i\}
\]
has size $\le \aleph_{\omega_1 + 1}$
(in fact the size is exactly $\aleph_{\omega_1 + 1}$).
But
\[
\{Y \subseteq \aleph_{\omega_1} : \exists i < \aleph_{\omega_1 + 1} .~Y \le X_i\} = \cP(\aleph_{\omega_1 + 1})
\]
because if $X \subseteq \aleph_{\omega_1 + 1}$
is such that $X \nleq X_i$ for all $i < \aleph_{\omega_1 + 1}$,
then $X_i \le X$ for all $i < \aleph_{\omega_1 + 1}$,
so such a set $X$ does not exist by \yaref{thm:silver:p:c3}.
\end{refproof}
>>>>>>> 5ee970194987e24c54bfc9c787cb219e15e71520

View File

@ -15,10 +15,10 @@
\cleardoublepage \cleardoublepage
\tableofcontents
\cleardoublepage
\input{inputs/intro} \input{inputs/intro}
\tableofcontents
\cleardoublepage
%\mainmatter %\mainmatter