better ref for axioms
All checks were successful
Build latex and deploy / checkout (push) Successful in 1m13s

This commit is contained in:
Josia Pietsch 2023-11-13 20:21:51 +01:00
parent 0771440511
commit 64a348389b
Signed by: josia
GPG Key ID: E70B571D66986A2D
7 changed files with 57 additions and 66 deletions

View File

@ -28,11 +28,11 @@ $\ZFC$ stands for
Let $x = \bigcup y$ denote Let $x = \bigcup y$ denote
\[ \[
\forall z.~(z \in x \iff \exists v.(v \in y \land z \in v)). \forall z.~(z \in x \iff \exists v.(v \in y \land z \in v)).
\] \]
\end{notation} \end{notation}
$\ZFC$ consists of the following axioms: $\ZFC$ consists of the following axioms:
\begin{axiom}[\vocab{Extensionality}] \begin{axiom}[\vocab{Extensionality}]
\yalabel{Axiom of Extensionality}{(AoE)}{ax:ext} \yalabel{Axiom of Extensionality}{(Ext)}{ax:ext} % (AoE)
\[ \[
\forall x.~\forall y.~(x = y \iff \forall z.~(z \in x \iff z \in y)). \forall x.~\forall y.~(x = y \iff \forall z.~(z \in x \iff z \in y)).
\] \]
@ -55,7 +55,7 @@ $\ZFC$ consists of the following axioms:
\] \]
\end{axiom} \end{axiom}
\begin{axiom}[\vocab{Pairing}] \begin{axiom}[\vocab{Pairing}]
\yalabel{Axiom of Pairing}{(Pair)}{ax:aop} % AoP \yalabel{Axiom of Pairing}{(Pair)}{ax:pair} % AoP
\[ \[
\forall x .~\forall y.~ \exists z.~(z = \{x,y\}). \forall x .~\forall y.~ \exists z.~(z = \{x,y\}).
\] \]
@ -75,18 +75,19 @@ $\ZFC$ consists of the following axioms:
\end{remark} \end{remark}
\begin{axiom}[\vocab{Union}] \begin{axiom}[\vocab{Union}]
\yalabel{Axiom of Union}{(AoU)}{ax:union} % Union \yalabel{Axiom of Union}{(Union)}{ax:union} % Union (AoU)
\[ \[
\forall x.~\exists y.~(y = \bigcup x). \forall x.~\exists y.~(y = \bigcup x).
\] \]
\end{axiom} \end{axiom}
\begin{axiom}[\vocab{Powerset}] \begin{axiom}[\vocab{Power Set}]
\yalabel{Powerset Axiom}{(Pow)}{ax:pow} \yalabel{Axiom of Power Set}{(Pow)}{ax:pow}
% (PWA)
We write $x = \cP(y)$ We write $x = \cP(y)$
for for
$\forall z.~(z \in x \iff x \subseteq z)$. $\forall z.~(z \in x \iff x \subseteq z)$.
The powerset axiom (PWA) states The power set axiom states
\[ \[
\forall x.~\exists y.~y=\cP(x). \forall x.~\exists y.~y=\cP(x).
\] \]
@ -99,11 +100,11 @@ $\ZFC$ consists of the following axioms:
The axiom of infinity says that there exists and inductive set. The axiom of infinity says that there exists and inductive set.
\end{axiom} \end{axiom}
\begin{axiomschema}[\vocab{Separation}] \begin{axiomschema}[\vocab{Separation}]
\yalabel{Axiom Schema of Separation}{(Aus)}{ax:aus} \yalabel{Axiom of Separation}{(Aus)}{ax:aus}
% TODO :(Aus)
Let $\phi$ be some fixed Let $\phi$ be some fixed
fist order formula in $\cL_\in$. fist order formula in $\cL_\in$.
Then $\text{(Aus)}_{\phi}$ Then $\AxAus_{\phi}$
states states
\[ \[
\forall v_1 .~\forall v_p .~\forall a .~\exists b .~\forall x.~ \forall v_1 .~\forall v_p .~\forall a .~\exists b .~\forall x.~
@ -112,7 +113,7 @@ $\ZFC$ consists of the following axioms:
Let us write $b = \{x \in a | \phi(x)\}$ Let us write $b = \{x \in a | \phi(x)\}$
for $\forall x.~(x \in b \iff x \in a \land f(x))$. for $\forall x.~(x \in b \iff x \in a \land f(x))$.
Then (Aus) can be formulated as Then \AxAus can be formulated as
\[ \[
\forall a.~\exists b.~(b = \{x \in a; \phi(x)\}). \forall a.~\exists b.~(b = \{x \in a; \phi(x)\}).
\] \]
@ -125,7 +126,7 @@ $\ZFC$ consists of the following axioms:
% $x = \bigcap y$ for ... % $x = \bigcap y$ for ...
\end{notation} \end{notation}
\begin{remark} \begin{remark}
(Aus) proves that \AxAus proves that
\begin{itemize} \begin{itemize}
\item $\forall a.~\forall b.~\exists c.~(c = a \cap b)$, \item $\forall a.~\forall b.~\exists c.~(c = a \cap b)$,
\item $\forall a.~\forall b.~\exists c.~(c = a \setminus b)$, \item $\forall a.~\forall b.~\exists c.~(c = a \setminus b)$,
@ -133,6 +134,7 @@ $\ZFC$ consists of the following axioms:
\end{itemize} \end{itemize}
\end{remark} \end{remark}
\begin{axiomschema}[\vocab{Replacement} (Fraenkel)] \begin{axiomschema}[\vocab{Replacement} (Fraenkel)]
\yalabel{Axiom of Replacement}{(Rep)}{ax:rep}
Let $\phi$ be some $\cL_{\in }$ formula. Let $\phi$ be some $\cL_{\in }$ formula.
Then Then
\[ \[
@ -141,6 +143,7 @@ $\ZFC$ consists of the following axioms:
\end{axiomschema} \end{axiomschema}
\begin{axiom}[\vocab{Choice}] \begin{axiom}[\vocab{Choice}]
\yalabel{Axiom of Choice}{(C)}{ax:c}
Every family of non-empty sets has a \vocab{choice set}: Every family of non-empty sets has a \vocab{choice set}:
\begin{IEEEeqnarray*}{rCl} \begin{IEEEeqnarray*}{rCl}
\forall x .~&(&\\ \forall x .~&(&\\

View File

@ -2,24 +2,24 @@
\begin{definition} \begin{definition}
Zermelo: Zermelo:
\[\Zermelo \coloneqq \AoE + \AoF + \AoP + \AoU + \Pow + \AoI + \Aus_{\phi}\] \[\Zermelo \coloneqq \AxExt + \AxFund + \AxPair + \AxUnion + \AxPow + \AxInf + \AxAus_{\phi}\]
Zermelo and Fraenkl: Zermelo and Fraenkl:
\[ \[
{\ZF} \coloneqq Z + (\Rep_{\phi}) {\ZF} \coloneqq Z + \AxRep_{\phi} % TODO fix parenthesis
\] \]
\[ \[
{\ZFC} \coloneqq \ZF + \Choice {\ZFC} \coloneqq \ZF + \AxC
\] \]
Variants: Variants:
\[ \[
{\ZFC^{-}} \coloneqq \ZFC \setminus \Pow. {\ZFC^{-}} \coloneqq \ZFC \setminus \AxPow.
\] \]
\[ \[
{\ZFC^{-\infty}} \coloneqq \ZFC \setminus \Inf {\ZFC^{-\infty}} \coloneqq \ZFC \setminus \AxInf
\] \]
\end{definition} \end{definition}
@ -37,12 +37,12 @@
we write we write
\[ \[
(x_1,\ldots,x_{n+1}) \coloneqq ((x_1,\ldots,x_n), x_{n+1}) (x_1,\ldots,x_{n+1}) \coloneqq ((x_1,\ldots,x_n), x_{n+1})
\] \]
where we assume that $(x_1,\ldots,x_{n})$ where we assume that $(x_1,\ldots,x_{n})$
is already defined. is already defined.
\end{definition} \end{definition}
\begin{definition} \begin{definition}
The \vocab{cartesian product} The \vocab{cartesian product}
$a \times b$ of two sets $a$ and $b$ $a \times b$ of two sets $a$ and $b$
is defined to be $a \times b \coloneqq \{(x,y) | x \in a \land y \in b\}$. is defined to be $a \times b \coloneqq \{(x,y) | x \in a \land y \in b\}$.
\end{definition} \end{definition}
@ -50,7 +50,7 @@
$a \times b$ exists. $a \times b$ exists.
\end{fact} \end{fact}
\begin{proof} \begin{proof}
Use $\Aus$ over $\cP(\cP(a \cup b))$. Use \AxAus over $\cP(\cP(a \cup b))$.
\end{proof} \end{proof}
\begin{definition} \begin{definition}
@ -112,7 +112,7 @@
${}^d b$ exists. ${}^d b$ exists.
\end{fact} \end{fact}
\begin{proof} \begin{proof}
Apply again $\Aus$ over $\cP(d \times b)$. Apply again \AxAus over $\cP(d \times b)$.
\end{proof} \end{proof}
\begin{definition} \begin{definition}

View File

@ -7,7 +7,7 @@
and $ b$ linearly ordered, $b$ has an upper bound, and $ b$ linearly ordered, $b$ has an upper bound,
Then $a$ has a maximal element. Then $a$ has a maximal element.
\end{theorem} \end{theorem}
\begin{proof} \begin{refproof}{thm:zorn}
Fix $(a, \le )$ as in the hypothesis. Fix $(a, \le )$ as in the hypothesis.
Let $A \coloneqq \{ \{(b,x) : x in b\} : b \le a, b \neq \emptyset\}$. Let $A \coloneqq \{ \{(b,x) : x in b\} : b \le a, b \neq \emptyset\}$.
Note that $A$ is a set (use separation on $\cP(\cP(a) \times \bigcup \cP(a))$). Note that $A$ is a set (use separation on $\cP(\cP(a) \times \bigcup \cP(a))$).
@ -65,7 +65,7 @@
Then $B = B_{u_0}^{\le^{\ast\ast}}$. Then $B = B_{u_0}^{\le^{\ast\ast}}$.
So $\le^{\ast\ast} \in W$, but now $n_0 \in b$. So $\le^{\ast\ast} \in W$, but now $n_0 \in b$.
So $b$ must have a maximum. So $b$ must have a maximum.
\end{proof} \end{refproof}
\begin{remark} \begin{remark}
Over $\ZF$ the axiom of choice and \yaref{thm:zorn} Over $\ZF$ the axiom of choice and \yaref{thm:zorn}
@ -107,20 +107,20 @@
of well-orders. of well-orders.
% TODO theorem % TODO theorem
\end{goal} \end{goal}
Recall that (AoI) states the existence of an inductive set $x$. Recall that \AxInf states the existence of an inductive set $x$.
We can hence form the smallest inductive set We can hence form the smallest inductive set
\[ \[
\omega \coloneqq \bigcap \{ x : x \text{ is inductive}\} \omega \coloneqq \bigcap \{ x : x \text{ is inductive}\}
\] \]
Note that $\omega$ exists, as it is a subset of the inductive Note that $\omega$ exists, as it is a subset of the inductive
set given by AoI. set given by \AxInf.
We call $\omega$ the set of \vocab{natural numbers}. We call $\omega$ the set of \vocab{natural numbers}.
\begin{notation} \begin{notation}
We write $0$ for $\emptyset$, We write $0$ for $\emptyset$,
and $y + 1$ for $y \cup \{y\}$. and $y + 1$ for $y \cup \{y\}$.
\end{notation} \end{notation}
With this notation the AoI is equivalent to With this notation the \AxInf is equivalent to
\[ \[
\exists x_0.~(0 \in x_0 \land \forall n. ~(n \in x_0 \implies n+1 \in x_0)). \exists x_0.~(0 \in x_0 \land \forall n. ~(n \in x_0 \implies n+1 \in x_0)).
\] \]
@ -218,7 +218,7 @@ Clearly, the $\in$-relation is a well-order on an ordinal $x$.
\item In the first case, $z+1 = y+1$. \item In the first case, $z+1 = y+1$.
\item Suppose that $z \in y$. \item Suppose that $z \in y$.
Then by the induction hypothesis $\phi(y, z+1)$ holds. Then by the induction hypothesis $\phi(y, z+1)$ holds.
If $y \in z+1$, then $\{y,z\}$ would violate AoF. If $y \in z+1$, then $\{y,z\}$ would violate \AxFund.
If $y = z+1$, then $z + 1 \in y + 1$. If $y = z+1$, then $z + 1 \in y + 1$.
If $z+1 \in y$, then $z+1 \in y+1$ as well. If $z+1 \in y$, then $z+1 \in y+1$ as well.
\end{itemize} \end{itemize}

View File

@ -14,6 +14,7 @@
for ordinals. for ordinals.
\end{notation} \end{notation}
\begin{lemma} \begin{lemma}
\label{lem:7:ordinalfacts}
\begin{enumerate}[(a)] \begin{enumerate}[(a)]
\item $0$ is an ordinal, and if $\alpha$ is \item $0$ is an ordinal, and if $\alpha$ is
an ordinal, so is $\alpha + 1$. an ordinal, so is $\alpha + 1$.
@ -27,7 +28,7 @@
or $\alpha \ni \beta$. or $\alpha \ni \beta$.
\end{enumerate} \end{enumerate}
\end{lemma} \end{lemma}
\begin{proof} \begin{refproof}{lem:7:ordinalfacts}
We have already proved (a) before. We have already proved (a) before.
(b) Fix $x \in \alpha$. Then $x \subseteq \alpha$. (b) Fix $x \in \alpha$. Then $x \subseteq \alpha$.
@ -41,12 +42,12 @@
As $\alpha$ is transitive, we have that $z, y, x \in \alpha$. As $\alpha$ is transitive, we have that $z, y, x \in \alpha$.
Thus $z \in x \lor z = x \lor z \ni x$. Thus $z \in x \lor z = x \lor z \ni x$.
$z = x$ contradicts Fund: $z = x$ contradicts \AxFund:
Consider $\{x,y\}$. Then $x \cap \{x,y\}$ is non empty, Consider $\{x,y\}$. Then $x \cap \{x,y\}$ is non empty,
as it contains $y$. as it contains $y$.
Furthermore $x \in y \cap \{x,y\} $ Furthermore $x \in y \cap \{x,y\} $
$z \ni x$ also contradicts Fund: $z \ni x$ also contradicts \AxFund:
If $x \in z$, then $z \ni x \ni y \ni z \ni x \ni \ldots$. If $x \in z$, then $z \ni x \ni y \ni z \ni x \ni \ldots$.
$\{x,y,z\}$ yields a contradiction, $\{x,y,z\}$ yields a contradiction,
as $y \in x \cap \{x,y,z\}$, $z \in y \cap \{x,y,z\}$, as $y \in x \cap \{x,y,z\}$, $z \in y \cap \{x,y,z\}$,
@ -58,7 +59,7 @@
(c) Say $\alpha \subsetneq \beta$. (c) Say $\alpha \subsetneq \beta$.
Pick $\xi \in \beta \setminus \alpha$ Pick $\xi \in \beta \setminus \alpha$
such that $\eta \in \alpha$ for every $\eta \in\xi \cap \beta$. such that $\eta \in \alpha$ for every $\eta \in\xi \cap \beta$.
(This exists by Fund). (This exists by \AxFund).
We want to see that $\xi = \alpha$. We want to see that $\xi = \alpha$.
We have $\xi \subseteq \alpha$ by the choice of $\xi$. We have $\xi \subseteq \alpha$ by the choice of $\xi$.
On the other hand $\alpha \subseteq \xi$: On the other hand $\alpha \subseteq \xi$:
@ -115,13 +116,13 @@
If that is not the case, If that is not the case,
then $\alpha_0 \in \alpha_0 \cup \beta_0$ then $\alpha_0 \in \alpha_0 \cup \beta_0$
and $\beta_0 \in \alpha_0 \cup \beta_0$. and $\beta_0 \in \alpha_0 \cup \beta_0$.
$\alpha_0 \in \alpha_0$ violates Fund. $\alpha_0 \in \alpha_0$ violates \AxFund.
Hence $\alpha_0 \in \beta_0$. Hence $\alpha_0 \in \beta_0$.
By the same argument, $\beta_0 \in \alpha_0$. By the same argument, $\beta_0 \in \alpha_0$.
But this violates Fund, But this violates \AxFund,
as $\alpha_0 \in \beta_0 \in \alpha_0$. as $\alpha_0 \in \beta_0 \in \alpha_0$.
\end{subproof} \end{subproof}
\end{proof} \end{refproof}
\begin{lemma} \begin{lemma}
Let $X$ be a set of ordinals, Let $X$ be a set of ordinals,
@ -134,7 +135,7 @@
It is actually the case that $\bigcap X \in X$: It is actually the case that $\bigcap X \in X$:
Pick $\alpha \in X$ such that $\alpha \subseteq \beta$ Pick $\alpha \in X$ such that $\alpha \subseteq \beta$
for all $\beta \in X$. This exists for all $\beta \in X$. This exists
by Fund and since all ordinals are comparable. by \AxFund and since all ordinals are comparable.
Then $\alpha = \bigcap X$. Then $\alpha = \bigcap X$.
\begin{notation} \begin{notation}

View File

@ -41,8 +41,8 @@ has the following axioms:
\forall x .~\exists y .~ y = \bigcup x. \forall x .~\exists y .~ y = \bigcup x.
\] \]
\end{axiom} \end{axiom}
\begin{axiom}[Power] \begin{axiom}[Power Set]
\yalabel{Powerset Axiom}{(Pow)}{ax:bg:pow} \yalabel{Power Set Axiom}{(Pow)}{ax:bg:pow}
\[ \[
\forall x .~\exists y .~ y = \cP(x). \forall x .~\exists y .~ y = \cP(x).
\] \]
@ -128,7 +128,7 @@ Furthermore $F\,''a \coloneqq \{y : \exists x \in a .~(x,y) \in F\}$.
\item $(\N, <)$ is well-founded. \item $(\N, <)$ is well-founded.
\item Let $M$ be a set, \item Let $M$ be a set,
and let $\in\defon{M} \coloneqq \{(x,y) : x,y \in M \land x \in y\}$. and let $\in\defon{M} \coloneqq \{(x,y) : x,y \in M \land x \in y\}$.
Fund is equivalent to saying that \AxFund is equivalent to saying that
this is a well-founded relation for every $M$. this is a well-founded relation for every $M$.
\end{enumerate} \end{enumerate}
\end{example} \end{example}
@ -136,10 +136,10 @@ Furthermore $F\,''a \coloneqq \{y : \exists x \in a .~(x,y) \in F\}$.
\begin{lemma} \begin{lemma}
\label{lem:fundseq} \label{lem:fundseq}
In $\ZFC - \Fund$, In $\ZFC - \AxFund$,
the following are equivalent: the following are equivalent:
\begin{itemize} \begin{itemize}
\item \Fund, \item \AxFund,
\item There is no sequence $\langle x_n : n < \omega \rangle$ \item There is no sequence $\langle x_n : n < \omega \rangle$
such that $x_{n+1} \in x_n$ for all $n < \omega$. such that $x_{n+1} \in x_n$ for all $n < \omega$.
\end{itemize} \end{itemize}
@ -149,12 +149,12 @@ Furthermore $F\,''a \coloneqq \{y : \exists x \in a .~(x,y) \in F\}$.
Then $\{x_n : n < \omega\}$ Then $\{x_n : n < \omega\}$
(this exists as by definition sequence of the $x_n$ is a function (this exists as by definition sequence of the $x_n$ is a function
and this set is the range of that function) and this set is the range of that function)
violates \Fund. violates \AxFund.
For the other direction let $M \neq \emptyset$ be some set. For the other direction let $M \neq \emptyset$ be some set.
Suppose that \Fund does not hold for $M$. Suppose that \AxFund does not hold for $M$.
Using \Choice, Using \AxC,
we construct an infinite sequence $x_0 \ni x_1 \ni x_2 \ni \ldots$ we construct an infinite sequence $x_0 \ni x_1 \ni x_2 \ni \ldots$
of elements of $M$. of elements of $M$.
@ -186,7 +186,7 @@ Furthermore $F\,''a \coloneqq \{y : \exists x \in a .~(x,y) \in F\}$.
&&~ ~\overline{g} \text{ is a function with domain $n$ and range $\subseteq M$, such that}\\ &&~ ~\overline{g} \text{ is a function with domain $n$ and range $\subseteq M$, such that}\\
&&~ ~\overline{g}(0) = x \land \forall m \in \omega.~(m+1 \in \dom(\overline{g}) \implies \overline{g}(m+1) = f(\overline{g}(m)))\}. &&~ ~\overline{g}(0) = x \land \forall m \in \omega.~(m+1 \in \dom(\overline{g}) \implies \overline{g}(m+1) = f(\overline{g}(m)))\}.
\end{IEEEeqnarray*} \end{IEEEeqnarray*}
$G$ exists as it can be obtained by \AxSep $G$ exists as it can be obtained by \AxAus
from ${}^{< \omega}M$. from ${}^{< \omega}M$.
By induction, By induction,
for every $n \in \omega$, for every $n \in \omega$,
@ -224,7 +224,7 @@ Furthermore $F\,''a \coloneqq \{y : \exists x \in a .~(x,y) \in F\}$.
\yaref{lem:fundseq}. \yaref{lem:fundseq}.
\end{proof} \end{proof}
\begin{remark} \begin{remark}
In $\ZF$ this is a weaker form of \Choice. In $\ZF$ this is a weaker form of \AxC.
\end{remark} \end{remark}
The construction of $g$ in the previous proof was a special case of The construction of $g$ in the previous proof was a special case of

View File

@ -114,27 +114,15 @@
\DeclareSimpleMathOperator{OD} \DeclareSimpleMathOperator{OD}
\DeclareSimpleMathOperator{AC} \DeclareSimpleMathOperator{AC}
\newcommand{\AxC}{\yarefs{ax:c}} \newcommand{\AxC}{\yarefs{ax:c}}
\newcommand{\AxSep}{\yarefs{ax:sep}} % Separation \newcommand{\AxExt}{\yarefs{ax:ext}} % AoE
\newcommand{\Choice}{\yarefs{ax:c}} \newcommand{\AxFund}{\yarefs{ax:fund}} % AoF
% \DeclareSimpleMathOperator{Choice} \newcommand{\AxPair}{\yarefs{ax:pair}} % AoP
% \DeclareSimpleMathOperator{Fund} \newcommand{\AxUnion}{\yarefs{ax:union}} % AoU
\newcommand{\Fund}{\yarefs{ax:fund}} \newcommand{\AxPow}{\yarefs{ax:pow}}
\DeclareSimpleMathOperator{Pair} \newcommand{\AxRep}{\yarefs{ax:rep}}
\DeclareSimpleMathOperator{Union} \newcommand{\AxInf}{\yarefs{ax:inf}} % AoI
\DeclareSimpleMathOperator{Rep} \newcommand{\AxAus}{\yarefs{ax:aus}} % Separation
\DeclareSimpleMathOperator{Pow}
\DeclareSimpleMathOperator{AoE}
\DeclareSimpleMathOperator{AoF}
\DeclareSimpleMathOperator{AoP}
\DeclareSimpleMathOperator{AoU}
\DeclareSimpleMathOperator{AoI}
\DeclareSimpleMathOperator{Inf}
\renewcommand{\Aus}{\text{Aus}}
% \DeclareSimpleMathOperator{Aus}
\DeclareSimpleMathOperator{Infinity}
\DeclareSimpleMathOperator{CH} \DeclareSimpleMathOperator{CH}
\DeclareSimpleMathOperator{DC} \DeclareSimpleMathOperator{DC}

1
todo
View File

@ -1 +0,0 @@
Better REF for axioms