This commit is contained in:
parent
a6465aea45
commit
54406f77ab
4 changed files with 243 additions and 8 deletions
|
@ -223,13 +223,5 @@ Clearly, the $\in$-relation is a well-order on an ordinal $x$.
|
|||
If $z+1 \in y$, then $z+1 \in y+1$ as well.
|
||||
\end{itemize}
|
||||
\end{itemize}
|
||||
|
||||
\end{proof}
|
||||
|
||||
|
||||
|
||||
|
||||
|
||||
|
||||
|
||||
|
||||
|
|
200
inputs/lecture_07.tex
Normal file
200
inputs/lecture_07.tex
Normal file
|
@ -0,0 +1,200 @@
|
|||
\lecture{07}{2023-11-09}{}
|
||||
|
||||
\begin{lemma}+
|
||||
By the axiom of foundation there cannot exist infinite
|
||||
descending chains
|
||||
$x_1 \ni x_2 \ni x_3 \ni \ldots$
|
||||
\end{lemma}
|
||||
\begin{proof}
|
||||
\todo{TODO!}
|
||||
\end{proof}
|
||||
|
||||
\begin{notation}
|
||||
From now on, we will write $\alpha, \beta, \ldots$
|
||||
for ordinals.
|
||||
\end{notation}
|
||||
\begin{lemma}
|
||||
\begin{enumerate}[(a)]
|
||||
\item $0$ is an ordinal, and if $\alpha$ is
|
||||
an ordinal, so is $\alpha + 1$.
|
||||
\item If $\alpha$ is an ordinal and $x \in a$,
|
||||
then $x$ is an ordinal.
|
||||
\item If $\alpha, \beta$ are ordinals
|
||||
and $\alpha \subseteq \beta$,
|
||||
then $\alpha = \beta$ or $\alpha \in \beta$.
|
||||
\item If $\alpha$ and $\beta$ are ordinals,
|
||||
then $\alpha \in \beta$, $\alpha = \beta$
|
||||
or $\alpha \ni \beta$.
|
||||
\end{enumerate}
|
||||
\end{lemma}
|
||||
\begin{proof}
|
||||
We have already proved (a) before.
|
||||
|
||||
(b) Fix $x \in \alpha$. Then $x \subseteq \alpha$.
|
||||
So if $y, z \in x$, then $y \in z \lor y = z \lor y \ni z$.
|
||||
Let $y \in x$. We need to see $y \subseteq x$.
|
||||
Let $z \in y$.
|
||||
\begin{claim}
|
||||
$z \in x$
|
||||
\end{claim}
|
||||
\begin{subproof}
|
||||
As $\alpha$ is transitive, we have that $z, y, x \in \alpha$.
|
||||
Thus $z \in x \lor z = x \lor z \ni x$.
|
||||
|
||||
$z = x$ contradicts Fund:
|
||||
Consider $\{x,y\}$. Then $x \cap \{x,y\}$ is non empty,
|
||||
as it contains $y$.
|
||||
Furthermore $x \in y \cap \{x,y\} $
|
||||
|
||||
$z \ni x$ also contradicts Fund:
|
||||
If $x \in z$, then $z \ni x \ni y \ni z \ni x \ni \ldots$.
|
||||
$\{x,y,z\}$ yields a contradiction,
|
||||
as $y \in x \cap \{x,y,z\}$, $z \in y \cap \{x,y,z\}$,
|
||||
$x \in z \cap \{x,y,z\}$.
|
||||
|
||||
So $z \in x$ as desired.
|
||||
\end{subproof}
|
||||
|
||||
(c) Say $\alpha \subsetneq \beta$.
|
||||
Pick $\xi \in \beta \setminus \alpha$
|
||||
such that $\eta \in \alpha$ for every $\eta \in\xi \cap \beta$.
|
||||
(This exists by Fund).
|
||||
We want to see that $\xi = \alpha$.
|
||||
We have $\xi \subseteq \alpha$ by the choice of $\xi$.
|
||||
On the other hand $\alpha \subseteq \xi$:
|
||||
Let $\eta \in \alpha \subseteq \beta$.
|
||||
We have that $\eta \in \xi \lor \eta = \xi \lor \eta \ni \xi$.
|
||||
If $\xi \in \eta$, then since $\eta \in \alpha$,
|
||||
we get $\xi \in \alpha$ contradicting the choice of $\xi$.
|
||||
If $\xi = \eta$, the $\xi = \eta \in \alpha$,
|
||||
which also is a contradiction.
|
||||
Thus $\eta \in \xi$.
|
||||
|
||||
This yields $\alpha \in \beta$, hence $\alpha$ is an ordinal.
|
||||
|
||||
|
||||
(d) By (c) if $\alpha$ and $\beta$ are ordinals,
|
||||
then $\alpha \subseteq \beta \iff (\alpha = \beta \lor \alpha \in \beta)$.
|
||||
We need tho see that if $ \alpha$, $\beta$ are ordinals,
|
||||
then $\alpha \subseteq \beta$ or $\beta \subseteq \alpha$.
|
||||
Suppose there are ordinals $\alpha$, $\beta$ such that
|
||||
this is not the case.
|
||||
|
||||
Pick such an $\alpha$.
|
||||
|
||||
Let $\alpha_0 \in \alpha \cup \{\alpha\}$
|
||||
be such that there is some $\beta$
|
||||
with $\lnot( \beta \subseteq \alpha_0 \lor \alpha_0 \subseteq \beta)$
|
||||
for for all $\gamma \in \alpha_0$,
|
||||
$\forall \beta. ( \beta \subseteq \gamma \lor \gamma \subseteq \beta)$.
|
||||
Pick $\beta_0$ such that
|
||||
\[
|
||||
\lnot \left( \beta_0 \subseteq \alpha_0 \lor \alpha_0 \subseteq \beta_0 \right).
|
||||
\]
|
||||
|
||||
Consider $\alpha_0 \cup \beta_0$.
|
||||
\begin{claim}
|
||||
$\alpha_0 \cup \beta_0$
|
||||
is an ordinal.
|
||||
\end{claim}
|
||||
\begin{subproof}
|
||||
$\alpha_0 \cup \beta_0$ is clearly transitive.
|
||||
Let $\gamma,\delta \in \alpha_0 \cup \beta_0$.
|
||||
We claim that $\gamma \in \delta \lor \gamma = \delta \lor \gamma \in \delta$.
|
||||
This can only fail if $\gamma \in \alpha_0$ and $\delta \in \beta_0$
|
||||
(or the other way around).
|
||||
But then $\gamma \in \delta \lor \gamma = \delta \lor \delta \in \gamma$
|
||||
by the choice of $\alpha_0$.
|
||||
\end{subproof}
|
||||
|
||||
\begin{claim}
|
||||
$\alpha_0 = \alpha_0 \cup \beta_0$
|
||||
or $\beta_0 = \alpha_0 \cup \beta_0$.
|
||||
\end{claim}
|
||||
\begin{subproof}
|
||||
If that is not the case,
|
||||
then $\alpha_0 \in \alpha_0 \cup \beta_0$
|
||||
and $\beta_0 \in \alpha_0 \cup \beta_0$.
|
||||
$\alpha_0 \in \alpha_0$ violates Fund.
|
||||
Hence $\alpha_0 \in \beta_0$.
|
||||
By the same argument, $\beta_0 \in \alpha_0$.
|
||||
But this violates Fund,
|
||||
as $\alpha_0 \in \beta_0 \in \alpha_0$.
|
||||
\end{subproof}
|
||||
\end{proof}
|
||||
|
||||
\begin{lemma}
|
||||
Let $X$ be a set of ordinals,
|
||||
$X \neq \emptyset$.
|
||||
Then $\bigcap X$ and $\bigcup X$ are ordinals.
|
||||
\end{lemma}
|
||||
\begin{proof}
|
||||
Easy.
|
||||
\end{proof}
|
||||
It is actually the case that $\bigcap X \in X$:
|
||||
Pick $\alpha \in X$ such that $\alpha \subseteq \beta$
|
||||
for all $\beta \in X$. This exists
|
||||
by Fund and since all ordinals are comparable.
|
||||
Then $\alpha = \bigcap X$.
|
||||
|
||||
\begin{notation}
|
||||
We write $\min(X)$ for $\bigcap X$
|
||||
and $\sup(X)$ for $\bigcup X$.
|
||||
\end{notation}
|
||||
|
||||
It need not be the case that $\bigcup X \in X$,
|
||||
for example $\bigcup \omega = \omega$.
|
||||
% but $\bigcup 2 = 1$.
|
||||
|
||||
\begin{definition}
|
||||
An ordinal $\alpha$ is called
|
||||
a \vocab[Ordinal!successor]{successor ordinal},
|
||||
iff $\alpha = \beta \cup \{\beta\}$
|
||||
for some $\beta \in \alpha$.
|
||||
Otherwise $\alpha$ is called
|
||||
a \vocab[Ordinal!limit]{limit ordinal}.
|
||||
\end{definition}
|
||||
\begin{observe}
|
||||
Note that $\alpha$ is a limit ordinal iff for all
|
||||
$\beta \in \alpha$, $\beta + 1 \in \alpha$:
|
||||
If there is $\beta \in \alpha$ such that $\beta+1 \not\in \alpha$,
|
||||
then either $\alpha = \beta+1$ (i.e.~$\alpha$ is a successor)
|
||||
or $\alpha \in \beta+1$,
|
||||
in which case $\beta \in \alpha \in \beta \cup \{\beta\} \lightning$.
|
||||
|
||||
Also if $\alpha$ is a successor,
|
||||
then by definition there is some $\beta \in \alpha$,
|
||||
with $\beta + 1 = \alpha$, so $\beta + 1 \not\in \alpha$.
|
||||
\end{observe}
|
||||
|
||||
\begin{notation}
|
||||
If $\alpha, \beta$ are ordinals,
|
||||
we write $\alpha < \beta$ for $\alpha \in \beta$
|
||||
(equivalently $\alpha \subsetneq \beta$).
|
||||
We also write $\alpha \le \beta$
|
||||
for $\alpha \in \beta \lor \alpha = \beta$
|
||||
(i.e.~$\alpha \subseteq \beta$).
|
||||
\end{notation}
|
||||
|
||||
\begin{example}
|
||||
Limit ordinals:
|
||||
\begin{itemize}
|
||||
\item $0$,
|
||||
\item $\omega$,
|
||||
\item $\omega + \omega = \sup(\omega \cup \{\omega, \omega + 1, \ldots\})$,%
|
||||
\footnote{To show that this exists, we need the recursion theorem
|
||||
and replacement.}
|
||||
$\omega + \omega + \omega, \omega + \omega + \omega + \omega, \ldots$
|
||||
\end{itemize}
|
||||
|
||||
Successor ordinals:
|
||||
\begin{itemize}
|
||||
\item $1 = \{0\}, 2 = \{0,1\}, 3, \ldots$
|
||||
\item $\omega +1 = \omega \cup \{\omega\} , \omega + 2, \ldots$,
|
||||
\end{itemize}
|
||||
|
||||
|
||||
\end{example}
|
||||
|
||||
\subsection{Induction and Recursion}
|
||||
|
42
inputs/tutorial_02.tex
Normal file
42
inputs/tutorial_02.tex
Normal file
|
@ -0,0 +1,42 @@
|
|||
\tutorial{02}{}{}
|
||||
|
||||
\subsection{Exercise 1}
|
||||
|
||||
(Cantor-Bendixson Derrivative)
|
||||
|
||||
For $A \subseteq \R$
|
||||
Let $A^{(0)} \coloneqq A$,
|
||||
$A^{(\alpha+1)} \coloneqq \left( A^{(\alpha)}' \right)$
|
||||
and $A^{(\lambda)} \coloneqq \bigcap_{\alpha < \lambda} A^{(\alpha)}$.
|
||||
|
||||
We want to find $A_i$ such that $A_i^{(i)} = \emptyset$,
|
||||
but $A_i^{(j)} \neq \emptyset$ for all $j < i$.
|
||||
|
||||
Let $A_1 = \{0\}$,
|
||||
$A_2 = \{0\} \cup \{\frac{1}{n+1} | n < \omega\}$
|
||||
and so on
|
||||
(in every step add sequences contained in a gap of the previous set converging to the points of the previous set):
|
||||
Define intervals:
|
||||
For all $x \in A_n \setminus \{\max A_n\}$
|
||||
let $\epsilon_{x,n} \coloneqq \min \{y \in A_n | y > x\} - x$
|
||||
and
|
||||
let $I_x^{n} \coloneqq (x, \epsilon_{x,n} + x)$.
|
||||
Construct a sequence converging to $x$,
|
||||
$(x_n)_{n < \omega}$,
|
||||
where $x +\frac{\epsilon_{x,n}}{n+2}$.
|
||||
This yields $A_n$ for every $n < \omega$,
|
||||
such that $A_n^\left( 1 \right) = A_{n-1}$,
|
||||
by setting
|
||||
\[
|
||||
A_{n+1} \coloneqq A_n \cup \bigcup_{x \in A_n \setminus \left( \bigcup_{i=1}^n I^1_{x_i} \righ))} \{(x_n)_{n < \omega} | x_n + x+\frac{\epsilon_{x,n}}{n+1}\}
|
||||
\]
|
||||
|
||||
Let $A_\omega \coloneqq \bigcup_{n < \omega} A_n$.
|
||||
Let $A_{\omega + 1} \coloneqq \{0\} \cup \{ \frac{1}{n}A_\omega + \frac{1}{n} | n < \omega\}$
|
||||
and so on.
|
||||
|
||||
|
||||
|
||||
|
||||
|
||||
|
|
@ -30,6 +30,7 @@
|
|||
\input{inputs/lecture_04}
|
||||
\input{inputs/lecture_05}
|
||||
\input{inputs/lecture_06}
|
||||
\input{inputs/lecture_07}
|
||||
|
||||
|
||||
\cleardoublepage
|
||||
|
|
Loading…
Reference in a new issue