lecture 08
This commit is contained in:
parent
54406f77ab
commit
37e521d4af
6 changed files with 259 additions and 11 deletions
|
@ -32,6 +32,7 @@ $\ZFC$ stands for
|
|||
\end{notation}
|
||||
$\ZFC$ consists of the following axioms:
|
||||
\begin{axiom}[\vocab{Extensionality}]
|
||||
\yalabel{Axiom of Extensionality}{(AoE)}{ax:ext}
|
||||
\[
|
||||
\forall x.~\forall y.~(x = y \iff \forall z.~(z \in x \iff z \in y)).
|
||||
\]
|
||||
|
@ -42,6 +43,7 @@ $\ZFC$ consists of the following axioms:
|
|||
\end{axiom}
|
||||
|
||||
\begin{axiom}[\vocab{Foundation}]
|
||||
\yalabel{Axiom of Foundation}{(Fund)}{ax:fund}
|
||||
Every set has an $\in$-minimal member:
|
||||
\[
|
||||
\forall x .~ \left(\exists a .~(a\in x) \implies
|
||||
|
@ -53,6 +55,7 @@ $\ZFC$ consists of the following axioms:
|
|||
\]
|
||||
\end{axiom}
|
||||
\begin{axiom}[\vocab{Pairing}]
|
||||
\yalabel{Axiom of Pairing}{(Pair)}{ax:aop} % AoP
|
||||
\[
|
||||
\forall x .~\forall y.~ \exists z.~(z = \{x,y\}).
|
||||
\]
|
||||
|
@ -72,12 +75,14 @@ $\ZFC$ consists of the following axioms:
|
|||
\end{remark}
|
||||
|
||||
\begin{axiom}[\vocab{Union}]
|
||||
\yalabel{Axiom of Union}{(AoU)}{ax:union} % Union
|
||||
\[
|
||||
\forall x.~\exists y.~(y = \bigcup x).
|
||||
\]
|
||||
\end{axiom}
|
||||
|
||||
\begin{axiom}[\vocab{Powerset}]
|
||||
\yalabel{Powerset Axiom}{(Pow)}{ax:pow}
|
||||
We write $x = \cP(y)$
|
||||
for
|
||||
$\forall z.~(z \in x \iff x \subseteq z)$.
|
||||
|
@ -87,13 +92,14 @@ $\ZFC$ consists of the following axioms:
|
|||
\]
|
||||
\end{axiom}
|
||||
\begin{axiom}[\vocab{Infinity}]
|
||||
\yalabel{Axiom of Infinity}{(Inf)}{ax:inf}
|
||||
A set $x$ is called \vocab{inductive},
|
||||
iff $\emptyset \in x \land \forall y.~(y \in x \implies y \cup \{y\} \in x)$.
|
||||
|
||||
The axiom of infinity says that there exists and inductive set.
|
||||
\end{axiom}
|
||||
|
||||
\begin{axiomschema}[\vocab{Separation}]
|
||||
\yalabel{Axiom Schema of Separation}{(Aus)}{ax:aus}
|
||||
% TODO :(Aus)
|
||||
Let $\phi$ be some fixed
|
||||
fist order formula in $\cL_\in$.
|
||||
|
@ -143,6 +149,3 @@ $\ZFC$ consists of the following axioms:
|
|||
&)&
|
||||
\end{IEEEeqnarray*}
|
||||
\end{axiom}
|
||||
|
||||
|
||||
% TODO Hier weiter
|
||||
|
|
|
@ -192,9 +192,4 @@ for example $\bigcup \omega = \omega$.
|
|||
\item $1 = \{0\}, 2 = \{0,1\}, 3, \ldots$
|
||||
\item $\omega +1 = \omega \cup \{\omega\} , \omega + 2, \ldots$,
|
||||
\end{itemize}
|
||||
|
||||
|
||||
\end{example}
|
||||
|
||||
\subsection{Induction and Recursion}
|
||||
|
||||
|
|
239
inputs/lecture_08.tex
Normal file
239
inputs/lecture_08.tex
Normal file
|
@ -0,0 +1,239 @@
|
|||
\lecture{08}{2023-11-13}{Induction and recursion}
|
||||
|
||||
\subsection{Classes}
|
||||
It is often very handy to work in a class theory rather than
|
||||
in set theory.
|
||||
|
||||
To formulate a class theory,
|
||||
we start out with a first order language
|
||||
with two types of variables,
|
||||
sets (denoted by lower case letters)
|
||||
and classes (denoted by capital letters),
|
||||
as well as one binary relation symbol $\in$
|
||||
for membership.
|
||||
|
||||
\vocab{Bernays-Gödel class theory} (\vocab{BG})
|
||||
has the following axioms:
|
||||
|
||||
\begin{axiom}[Extensionality]
|
||||
\yalabel{Axiom of Extensionality}{(Ext)}{ax:bg:ext}
|
||||
\[
|
||||
\forall x, y. \left( x = y \iff \left( \forall z.~(z \in x \iff z \in y \right) \right).
|
||||
\]
|
||||
\end{axiom}
|
||||
\begin{axiom}[Foundation]
|
||||
\yalabel{Axiom of Foundation}{(Fund)}{ax:bg:fund}
|
||||
\[
|
||||
\forall x .(x \neq \emptyset \implies \exists y \in x . y \cap x = \emptyset).
|
||||
\]
|
||||
\end{axiom}
|
||||
|
||||
\begin{axiom}[Pairing]
|
||||
\yalabel{Axiom of Pairing}{(Pair)}{ax:bg:pair}
|
||||
\[
|
||||
\forall x \forall y \exists z . z = \{x,y\}.
|
||||
\]
|
||||
\end{axiom}
|
||||
|
||||
\begin{axiom}[Union]
|
||||
\yalabel{Axiom of Union}{(Union)}{ax:bg:union}
|
||||
\[
|
||||
\forall x \exists y .~ y = \bigcup x.
|
||||
\]
|
||||
\end{axiom}
|
||||
\begin{axiom}[Power]
|
||||
\yalabel{Powerset Axiom}{(Pow)}{ax:bg:pow}
|
||||
\[
|
||||
\forall x \exists y .~ y = \cP(x).
|
||||
\]
|
||||
\end{axiom}
|
||||
|
||||
\begin{axiom}[Infinity]
|
||||
\yalabel{Axiom of Infinity}{(Infinity)}{ax:bg:inf}
|
||||
\[
|
||||
\exists x . ~(\emptyset \in x \land \left( \forall y \in x .~y \cup \{y\} \in x \right)).
|
||||
\]
|
||||
\end{axiom}
|
||||
|
||||
Together with the following axioms for classes:
|
||||
|
||||
\begin{axiom}[Extensionality for classes]
|
||||
\[
|
||||
\forall X \forall Y \left( \forall x(x \in X \iff y \in X) \implies X = Y).
|
||||
\]
|
||||
\end{axiom}
|
||||
|
||||
\begin{axiom}
|
||||
Every set is a class:
|
||||
\[
|
||||
\forall x \exists X. x = X.
|
||||
\]
|
||||
\end{axiom}
|
||||
\begin{axiom}
|
||||
Every element of a class is a set:
|
||||
\[
|
||||
\forall X \exists Y.~(X \in Y \to \exists x.~x = X).
|
||||
\]
|
||||
\end{axiom}
|
||||
\begin{axiom}[Replacement]
|
||||
\yalabel{Axiom of Replacement}{(Rep)}{ax:bg:rep}
|
||||
|
||||
If $F$ is a function and inf $a $ is a set,
|
||||
then $F"a$ is a set.
|
||||
\end{axiom}
|
||||
Here a \vocab[Class function]{(class) function} is a class
|
||||
consisting of pairs $(x,y)$,
|
||||
such that for every $x$ there is at most one $y$
|
||||
with $(x,y) \in F$.
|
||||
Furthermore $F"a \coloneqq \{y : \exists x \in a .~(x,y) \in F\}$.
|
||||
|
||||
\begin{remark}
|
||||
Note that we didn't need to use an axiom schema,
|
||||
\yarefs{ax:bg:rep} is a single axiom.
|
||||
\end{remark}
|
||||
|
||||
\begin{axiom}[Comprehension]
|
||||
\yalabel{Axiom of Comprehension}{(Comp)}{ax:bg:comp}
|
||||
|
||||
\[
|
||||
\forall X_1 \ldots \forall X_k .~\exists Y ( \forall x .~x \in Y \iff \phi(x,X_1,\ldots, X_k))
|
||||
\]
|
||||
where $\phi(x, X_1, \ldots, X_k)$
|
||||
is a formula which contains exactly $X_1, \ldots, X_k, x$
|
||||
as free variables,
|
||||
and $\phi$ does not have quantifiers
|
||||
ranging over classes.%
|
||||
\footnote{If one removes the restriction regarding
|
||||
quantifiers another theory, called
|
||||
\vocab{Morse-Kelly} set theory, is obtained.}
|
||||
\end{axiom}
|
||||
|
||||
|
||||
\todo{notation: $\emptyset, \cap$}
|
||||
|
||||
|
||||
|
||||
\subsection{Induction and Recursion}
|
||||
|
||||
\begin{definition}
|
||||
A binary relation $R$ on a set $X$,
|
||||
i.e.~$R \subseteq X \times X$,
|
||||
is called \vocab{well-founded}
|
||||
iff for all $\emptyset \neq Y \subseteq X$
|
||||
there is some $x \in Y$
|
||||
such that for no $y \in Y. (y,x) \in R$.
|
||||
\end{definition}
|
||||
|
||||
\begin{example}
|
||||
\begin{enumerate}[(a)]
|
||||
\item $(\N, <)$ is well-founded.
|
||||
\item Let $M$ be a set,
|
||||
and let $\in\defon{M} \coloneqq \{(x,y) : x,y \in M \land x \in y\}$.
|
||||
Fund is equivalent to saying that
|
||||
this is a well-founded relation for every $M$.
|
||||
\end{enumerate}
|
||||
\end{example}
|
||||
|
||||
|
||||
\begin{lemma}
|
||||
\label{lem:fundseq}
|
||||
In $\ZFC - \Fund$,
|
||||
the following are equivalent:
|
||||
\begin{itemize}
|
||||
\item \Fund,
|
||||
\item There is no sequence $\langle x_n : n < \omega \rangle$
|
||||
such that $x_{n+1} \in x_n$ for all $n < \omega$.
|
||||
\end{itemize}
|
||||
\end{lemma}
|
||||
\begin{proof}
|
||||
Suppose such sequence exists.
|
||||
Then $\{x_n : n < \omega\}$
|
||||
(this exists as by definition sequence of the $x_n$ is a function
|
||||
and this set is the range of that function)
|
||||
violates \Fund.
|
||||
|
||||
For the other direction let $M \neq \emptyset$ be some set.
|
||||
Suppose that \Fund does not hold for $M$.
|
||||
|
||||
Using \Choice,
|
||||
we construct an infinite sequence $x_0 \ni x_1 \ni x_2 \ni \ldots$
|
||||
of elements of $M$.
|
||||
|
||||
More formally,
|
||||
for each $x \in M$
|
||||
let $A_x \coloneqq \{y \in M: y \in x\}$.
|
||||
Suppose that $A_x \neq \emptyset$ for all $x \in M$.
|
||||
Using \AxC
|
||||
we get a function for $\langle A_x : x \in M \rangle$,%
|
||||
\footnote{Actually we only need the axiom of dependent choice,
|
||||
a weaker form of the axiom of choice.
|
||||
We'll discuss this later.% TODO REF
|
||||
}
|
||||
i.e.~a function $f\colon M \to M$
|
||||
such that $f(x) \in A_x$ for $x \in M$.
|
||||
Now fix $x \in M$.
|
||||
We want to produce
|
||||
a function
|
||||
$g\colon \omega \to M$
|
||||
such that
|
||||
\begin{itemize}
|
||||
\item $g(0) = x$,
|
||||
\item $g(n+1) = f(g(n)) \in A_{g(n)}$.
|
||||
\end{itemize}
|
||||
|
||||
Let
|
||||
\begin{IEEEeqnarray*}{rCl}
|
||||
G &=& \{\overline{g} : \exists n \in \omega . \\
|
||||
&&~ ~\overline{g} \text{ is a function with domain $n$ and range $\subseteq M$, such that}\\
|
||||
&&~ ~\overline{g}(0) = x \land \forall m \in \omega.~(m+1 \in \dom(\overline{g}) \implies \overline{g}(m+1) = f(\overline{g}(m)))\}.
|
||||
\end{IEEEeqnarray*}
|
||||
$G$ exists as it can be obtained by \AxSep
|
||||
from ${}^{< \omega}M$.
|
||||
By induction,
|
||||
for every $n \in \omega$,
|
||||
there is a $\overline{g} \in G$
|
||||
with $\dom(\overline{g}) \in n+1$:
|
||||
This holds for $n = 0$,
|
||||
as $\{(0,x)\} \in G$.
|
||||
If $\overline{g} \in G$ with $\dom(\overline{g}) = n+ 1$,
|
||||
then $\overline{g} \cup \{(n+1, f(\overline{g}(n)))\} \in G$.
|
||||
Also by induction,
|
||||
for every $n \in \omega$,
|
||||
there is a \emph{unique}
|
||||
$\overline{g}$ with $\dom(\overline{g}) = n+1$.
|
||||
|
||||
Now let $g = \bigcup \overline{G}$.
|
||||
Also let $g(0) = x$ and $g(n+1) = f(g(n))$
|
||||
for all $n \in \omega$.
|
||||
\end{proof}
|
||||
|
||||
\begin{lemma}[Dependent Choice]
|
||||
Suppose that $M \neq \emptyset$
|
||||
and $R$ is a binary relation on $M$
|
||||
such that for all $x \in M$,
|
||||
$A_x \coloneqq \{y \in M : (y,x) \in R\}$
|
||||
is not empty.
|
||||
|
||||
Then for every $x \in M$ there exists a function
|
||||
$g\colon \omega \to M$
|
||||
such that $g(0) = x$
|
||||
and $g(n+1) \in A_{g(n)}$
|
||||
for all $n < \omega$.
|
||||
\end{lemma}
|
||||
\begin{proof}
|
||||
We showed a special case of this in the proof of
|
||||
\yaref{lem:fundseq}.
|
||||
\end{proof}
|
||||
\begin{remark}
|
||||
In $\ZF$ this is a weaker form of \Choice.
|
||||
\end{remark}
|
||||
|
||||
The construction of $g$ in the previous proof was a special case of
|
||||
a construction on the proof of the recursion theorem: % TODO REF
|
||||
|
||||
|
||||
|
||||
|
||||
|
||||
|
||||
|
|
@ -47,3 +47,11 @@
|
|||
\yaref@text@large{#1}%
|
||||
\fi%
|
||||
}
|
||||
% Force a small reference
|
||||
\newcommand{\yarefs}[1]{%
|
||||
\relax\ifmmode%
|
||||
\yaref@math@verysmall{#1} % scriptscript style
|
||||
\else%
|
||||
\yaref@text@small{#1} %
|
||||
\fi%
|
||||
}
|
||||
|
|
|
@ -113,7 +113,10 @@
|
|||
\DeclareSimpleMathOperator{HOD}
|
||||
\DeclareSimpleMathOperator{OD}
|
||||
\DeclareSimpleMathOperator{AC}
|
||||
\DeclareSimpleMathOperator{Fund}
|
||||
\newcommand{\Choice}{\yarefs{ax:c}}
|
||||
% \DeclareSimpleMathOperator{Choice}
|
||||
% \DeclareSimpleMathOperator{Fund}
|
||||
\newcommand{\Fund}{\yarefs{ax:fund}}
|
||||
\DeclareSimpleMathOperator{Pair}
|
||||
\DeclareSimpleMathOperator{Union}
|
||||
\DeclareSimpleMathOperator{Rep}
|
||||
|
@ -124,7 +127,6 @@
|
|||
\DeclareSimpleMathOperator{AoP}
|
||||
\DeclareSimpleMathOperator{AoU}
|
||||
\DeclareSimpleMathOperator{AoI}
|
||||
\DeclareSimpleMathOperator{Choice}
|
||||
\DeclareSimpleMathOperator{Inf}
|
||||
|
||||
|
||||
|
|
|
@ -31,6 +31,7 @@
|
|||
\input{inputs/lecture_05}
|
||||
\input{inputs/lecture_06}
|
||||
\input{inputs/lecture_07}
|
||||
\input{inputs/lecture_08}
|
||||
|
||||
|
||||
\cleardoublepage
|
||||
|
|
Loading…
Reference in a new issue