diff --git a/inputs/lecture_01.tex b/inputs/lecture_01.tex new file mode 100644 index 0000000..6c8676c --- /dev/null +++ b/inputs/lecture_01.tex @@ -0,0 +1,164 @@ +\lecture{01}{2023-10-16}{} + +Literature + +\begin{itemize} + \item Schindler, Set theory + \item K. Kunen + \item T.~Jech + \item A.~Kanamori, The higher infinite +\end{itemize} + +\section*{Outline} +\begin{itemize} + \item Set theory + \begin{itemize} + \item Naive set theory + \item $\ZFC$ + \item Ordinals and Cardinals + \item Models of set theory (in particular forcing) + \item Independence of $\CH$. + \end{itemize} +\end{itemize} + + +\section{Naive set theory} + +\begin{definition} + Let $A \neq \emptyset$, $B$ be arbitrary sets. + We write $A \le B$ ($A$ is not bigger than $B$ ) + iff there is an injection $f\colon A \hookrightarrow B$. +\end{definition} +\begin{lemma} + If $A \le B$, + then there is a surjection $g\colon B \twoheadrightarrow B$. +\end{lemma} +\begin{proof} + Fix $f\colon A \hookrightarrow B$. + If $f$ is also surjective, then $f^{-1}\colon B \to A$ + is also a bijection. + Otherwise define $g$ by choosing an arbitrary $x_0 \in B$ + and let + \[ + g(y) \coloneqq \begin{cases} + x &: f(x) = y,\\ + x_0 &: \text{if there is no such $x$}. + \end{cases}. + \] +\end{proof} +\begin{lemma} + If there is a surjection $f\colon A \twoheadrightarrow B$, + then $B \le A$. +\end{lemma} +\begin{proof} + For every $x \in B$ choose one of its preimages under $f$. + This is basically equivalent to $\AC$. +\end{proof} + +\begin{definition} + For sets $A$, $B$ + write $A < B$ iff $A \le B \land B \not\le A$. +\end{definition} +\begin{theorem}[Cantor] + $\N < \R$. +\end{theorem} +\begin{proof}[Cantor's original proof] + Clearly $\N \le \R$. + Take some function $f\colon \N \to \R$ + + Define a sequence $([a_n, b_n], n \in \N)$ + of nonempty closed nested intervals, + i.e.~$a_n \le a_{n+1} < b_{n+1} \le b_n$ + as follows: + Set $a_0 \coloneqq 0$, $b_0 \coloneqq 1$, + and $a_{n+1}$, $b_{n+1}$ such that $x_n \notin [a_{n+1}, b_{n+1}]$. + Then $\bigcap_{n \in \N} [a_n, b_n] \neq \emptyset$ + since $\R$ is complete. + Thus $f$ is not surjective. +\end{proof} + +\begin{notation} + For a set $A$, + $\bP(A)$ denotes the \vocab{power set} of $A$, + i.e.~the set of all subsets of $A$. +\end{notation} +\begin{theorem} + For all sets $A$, $A < \bP(A)$. +\end{theorem} +\begin{proof} + Clearly $A \le \bP(A)$ + since $A \ni a \mapsto \{a\} \in \bP(A)$ is an injection. + + Let $f\colon A \to \bP(A)$, we want to show that this is not + surjective. + Let $c \coloneqq \{x \in A | x \not\in f(x)\} \in \bP(A)$. + Suppose that $f(x_0) = c$. + Then both $x_0 \in c$ and $x_0 \not\in c$ + lead to a contradiction. +\end{proof} + +\begin{definition} + For sets $A$, $B$ + write $A \sim B$ + for $A \le B$ and $B \le A$. +\end{definition} + +\begin{theorem}[Schröder-Bernstein] + Let $A$, $B$ be any sets. + If $A \sim B$, there is a bijection $h\colon A \to B$. +\end{theorem} +\begin{proof} + Let $f\colon A \hookrightarrow B$ and $g\colon B \hookrightarrow A$ + be injective. + We need to define a bijection $h\colon A \to B$. + For each $x \in A$ we define $N(x) \in \N \cup \{\infty\}$ + and the maximal ``preimage sequence'' $(x_n : n < N(x))$ + as follows: + $x_0 \coloneqq x$, + if $n + 1 < N$ and $n$ is even, then $x_n\coloneqq g(x_{n+1})$, + if it is odd, $x_n \coloneqq f(x_{n+1})$ + and either $N = \infty$ + or $x_{N-1}$ has no preimage under $f$ if $N-1$ is even, + resp.~$g$ if $N-1$ is odd. + + + Similarly for each $y \in B$ + an $M = M(y) \in \N \cup \{\infty\}$ + and the maximal preimage sequence $(y_n : n < M)$ + can be defined. + + Let $A^{\text{odd}} \coloneqq \{x \in A : N(x) \text{ is an odd natural number}\}$, + $A^{\text{even}} \coloneqq \{x \in A : N(x) \text{ is an even natural number}\}$, + $A^{\infty} \coloneqq \{x \in A : N(x) = \infty\}$ + and similarly for $B$. + + Now define + \begin{IEEEeqnarray*}{rCl} + h\colon A &\longrightarrow & B \\ + x &\longmapsto & + \begin{cases} + f(x) &: x \in A^{\text{odd}} \cup A^{\infty},\\ + g^{-1}(x) &: x \in A^{\text{even}}. + \end{cases} + \end{IEEEeqnarray*} + + It is clear that this is bijective. + + \todo{missing picture $f(A^{\text{odd}}) \subseteq B^{\text{even}}$, $f(A^\infty) = B^\infty$}. +\end{proof} + +\begin{definition} + The \vocab{continuum hypothesis} ($\CH$ ) + says that there is no set $A$ such that + $\N < A < \R$. + + $\CH$ is equivalent to the statement that there is no set $A \subset \R$ + which is uncountable ($\N < A$ ) + and there is no bijection $A \leftrightarrow \R$. +\end{definition} + +What we'll do next: +Define open and closed subsets of $\R$. +Show $\CH$ for open and closed sets. + + diff --git a/logic2.tex b/logic2.tex index 1426625..15cf247 100644 --- a/logic2.tex +++ b/logic2.tex @@ -1,8 +1,8 @@ -\documentclass[10pt,ngerman,a4paper,fancyfoot,git]{mkessler-script} +\documentclass[10pt,a4paper,fancyfoot,git]{mkessler-script} \course{Logic II} \lecturer{Ralf Schindler} -\assistant{} +\assistant{Mirko Bartsch} \author{Josia Pietsch} \usepackage{logic} @@ -24,6 +24,7 @@ \newpage +\input{inputs/lecture_01} \cleardoublepage