diff --git a/inputs/lecture_19.tex b/inputs/lecture_19.tex index 8e49054..6eba058 100644 --- a/inputs/lecture_19.tex +++ b/inputs/lecture_19.tex @@ -168,7 +168,7 @@ Again by a similar argument we get: \section{Forcing} Recall that a structure $\bP = (P, \le )$ is a partially ordered set (\vocab{poset}) -if $\le $ is reflexive, symmetric nd transitive. +if $\le $ is reflexive, symmetric and transitive. \begin{definition} \label{def:forcingwords} diff --git a/inputs/lecture_21.tex b/inputs/lecture_21.tex index e337b5f..f671e44 100644 --- a/inputs/lecture_21.tex +++ b/inputs/lecture_21.tex @@ -155,7 +155,4 @@ to $M$. \end{example} -Next steps: -\begin{itemize} - \item Make sense of $M[g]$. -\end{itemize} +Next we want to define $M[g]$. diff --git a/inputs/lecture_22.tex b/inputs/lecture_22.tex new file mode 100644 index 0000000..12abc76 --- /dev/null +++ b/inputs/lecture_22.tex @@ -0,0 +1,254 @@ +\lecture{22}{2024-01-22}{More Forcing} + +\begin{warning}+ + Forcing will not be relevant for the exam. + Because of a lack of time, this is more of an outlook + than a thorough presentation of the material. +\end{warning} + +For the rest of the section, let us fix +a transitive model $M$ of $\ZFC$ +a partial order $\mathbb{P}$ +and an $M$-generic filter $g$. + +\begin{definition}[$\mathbb{P}$-names] + For an ordinal $\alpha \in M$% + \footnote{Recall that $\Ord_M = \Ord \cap M$.}, + let $M^{\mathbb{P}}_\alpha$, + the \vocab{$\mathbb{P}$-names} in $M$ of rank $\le \alpha$, + be defined as follows: + + \[ + \tau \in M_{\alpha}^{\mathbb{P}} :\iff + \tau \in M \land + \tau \subseteq \mathbb{P} \times \bigcup \{M_\beta^{\mathbb{P}}: \beta < \alpha\}, + \] + i.e.~the elements of $\tau \in M_\alpha^{\mathbb{P}}$ + are of the form $(p, \sigma)$, + where $p \in \cP$ and $\sigma \in M^{\mathbb{P}}_\beta$ + for some $\beta < \alpha$. + + Finally $M^{\mathbb{P}} = \bigcup \{M_\alpha^{\mathbb{P}} : \alpha \in M\}$. +\end{definition} + +Let $R$ be the relation on $M^{\mathbb{P}}$ defined by +$\sigma R \tau$ iff $\exists p \in \mathbb{P}.~(p,\sigma) \in \tau$. +If $\tau \in M^\mathbb{P}$ +and $(p, \sigma) \in \tau$, +then $\sigma \in \{p, \sigma\} \in (p,\sigma) \in \tau$, +so the relation $R$ +is well founded. +\begin{definition} + Let $\tau \in M_\alpha^{\mathbb{P}}$. + Then $\tau^g$, + the \vocab{$g$-interpretation of $\tau$}, + is defined to be + \[ + \{\sigma^g : \exists p \in g .~(p,\sigma) \in \tau\}. + \] +\end{definition} + +\begin{definition} + $M[g]$, + the forcing extension of $M$ + given by $g$, + is + \[ + \{ \tau^g : \tau \in M^{\mathbb{P}}\} . + \] +\end{definition} +\begin{lemma} + $M[g]$ is transitive. +\end{lemma} +\begin{proof} + Trivial! +\end{proof} +\begin{lemma} + $M \cup \{g\} \subseteq M[g]$. +\end{lemma} +\begin{proof} + For all $x \in M$ we need to find a name \vocab{$\check{x}$} + such that $\check{x}^g = x$. + + We can recursively (along $\in$) define + \[ + \check{x} = \{(p, \check{y}) : p \in \mathbb{P} \land y \in x\}. + \] + By induction, $\check{x} \in M$ for all $x \in M$. + \begin{claim} + $\check{x}^g = x$. + \end{claim} + \begin{subproof} + Recall that $\mathbb{P} \neq \emptyset$. + Inductively, we get + \begin{IEEEeqnarray*}{rCl} + \check{x}^g &=& \{\check{y}^g : \exists p \in g.~(p,\check{y}) \in \check{x}\}\\ + &\overset{\text{induction}}{=}& \{y : \exists p \in g.~(p,\check{y}) \in \check{x}\}\\ + &\overset{\text{definition of $\check{x}$}}{=}& \{y : y \in x\} = x. + \end{IEEEeqnarray*} + \end{subproof} + + So $M \subseteq M[g]$. + + + We also need a name for $g$. + Let \vocab{$\dot{g}$}$ \coloneqq \{(p, \check{p}) : p \in \mathbb{P}\}$. + + Indeed + \begin{IEEEeqnarray*}{rCl} + \dot{g}^g &=& \{\check{p}^g : \exists p \in g.~(p, \check{p}) \in \dot{g}\}\\ + &=& \{p : p \in g\} = g. + \end{IEEEeqnarray*} +\end{proof} + + +\begin{lemma} + \label{lem:mgmodelexfundinfpairunion} + $M[g] \models \AxExt, \AxFund, \AxInf, \AxPair, \AxUnion$. +\end{lemma} +\begin{proof} + \begin{itemize} + \item \AxExt: + + The formula $\forall x.~\forall y .~((\forall z \in x.~z \in y \land \forall z \in y.~z \in x) \to x = y)$ + is $\Pi_1$, hence it is true in $M[g]$ + by %TODO REF downward absolutenes. + \item \AxFund: + Again, + \[ + \forall x.~(\exists y \in x .~y = y \to \exists y \in x.~\forall z \in y.~z \not\in x) + \] + is $\Pi_1$. + \item \AxInf + can be written as + \[ + \exists x .~(\underbrace{\neq \in x \land \forall y \in x.y \cup \{y\} \in x}_{\Sigma_0}). + \] + We have $ \omega \in M \subseteq M[g]$, + so $M[g] \models \AxInf$. + \item \AxPair: + Let us assume $x,y \in M[g]$, + say $x = \tau^g$ and $y = \sigma^g$. + Let $\pi = \{(p,\tau) : p \in \mathbb{P} \} \cup \{(p,\sigma) : p \in \mathbb{P}\} \in M^{\mathbb{P}}$. + Then $\pi^g = \{\tau^g, \sigma^g\} = \{x,y\}$, + so $\{x,y\} \in M[g]$. + As a $\cL_\in$-statement, + $z = \{x,y\}$ is $\Sigma_0$, + so $M[g] \models \text{``$\{x,y\}$ is the pair of $x$ and $y$''}$. + Hence $M[g] \models \AxPair$. + \item \AxUnion: + Similar to \AxPair.\todo{Exercise} + \end{itemize} +\end{proof} + +Still missing are +\begin{itemize} + \item \AxPow, + \item \AxAus, + \item \AxRep, + \item \AxC. +\end{itemize} + +\begin{definition}[\vocab{Forcing relation}] + Let $M$ be a countable transitive model of $\ZFC$ + and let $\mathbb{P} \in M$ be a partial order. + Let $p \in \mathbb{P}$ + and let $\phi$ be a $\cL_{\in }$-formula. + + Let $\tau_1,\ldots, \tau_k \in M^{\mathbb{P}}$ be names. + + We say that + $p$ \vocab[force]{forces} $\phi(\tau_1,\ldots, \tau_k)$, + \[ + p \Vdash^{\mathbb{\cP}}_{M} \phi(\tau_1, \ldots, \tau_k), + \] + if for all $h \subseteq \mathbb{P}$ + which are $\mathbb{P}$-generic over $M$ + with $p \in h$, + \[ + M[h] \models\phi(\tau_1^h, \ldots, \tau_k^h). + \] +\end{definition} +\begin{theorem} + Fix an $\cL_\in$-formula $\phi$. + Then the relation + \[ + R = \{(p,\tau_1,\ldots,\tau_k : p \Vdash ^{\mathbb{P}}_M \phi(\tau_1,\ldots,\tau_k)\} + \] + is definable over $M$ + (in the parameter $\mathbb{P}$). +\end{theorem} +\begin{proof} + Omitted. +\end{proof} + +\begin{theorem}[\vocab{Forcing Theorem}] + Let $M$, $\mathbb{P}$, $g$, + be as above, + let $\phi$ be a formula, + and let $\tau_1, \ldots, \tau_k \in M^{\mathbb{P}}$. + Then the following are equivalent: + \begin{enumerate}[(1)] + \item $M[g] \models \phi(\tau_1^g, \ldots, \tau_k^g)$. + \item There is some $p \in g$ with + \[ + p \Vdash^{\mathbb{P}}_M \phi(\tau_1,\ldots, \tau_k). + \] + + \end{enumerate} +\end{theorem} +\begin{proof} + Omitted. +\end{proof} + +\begin{theorem} + $M[g] \models \ZFC$. +\end{theorem} +\begin{proof} + We have already shown a part of this in + \yaref{lem:mgmodelexfundinfpairunion}. + + Let us show that $M[g] \models \AxAus$, + the rest is similar and left as an exercise.% + \footnote{or done next semester in Logic IV!} + + Let $\phi$ be a formula, + let $a, x_1,\ldots,x_k \in M[g]$. + We need to see + \[M[g] \models \exists y.~y = \{z \in a : \phi(z, x_1,\ldots,x_k)\}.\] + + If suffices to show that there is some $y \in M[g]$ + with $y = \{ z \in a : M[g] \models \phi(z, x_1,\ldots,x_k)\}$. + + For this, let us construct a name for $y$. + Let $a = \tau^g$, $x_i = \sigma_i^g$. + + Let + \[ + \pi = \{(p,\rho) : \exists \overline{p} > p.~(\overline{p}, \rho) \in \tau \land + p \Vdash^{\mathbb{P}}_M \phi(\rho, \sigma_1, \ldots, \sigma_k)\}. + \] + + We have $\pi \in M$, since the relation + $ \Vdash^{\mathbb{P}}_M$ can be defined in $M$. + + Let $z \in a$ such that $M[g] \models \phi(z, x_1,\ldots,x_n)$. + We have $z = \rho^g$ + for some $\rho$ + and there is $\overline{p} \in g$ with $(\overline{p}, \rho) \in \pi$. + Now $M[g] = \phi(\rho^g, \sigma_1^g,\ldots\sigma_k^g)$. + + Let $p' \Vdash^{\mathbb{P}}_M \phi(\rho, \sigma_1,\ldots, \sigma_k)$, + where $p' \in g$. + We have $p', \overline{p} \in g$, + so there is some $p \le p', \overline{p}$ with $p \in g$. + Then $(p,\rho) \in \pi$, + so $\rho^g \in \pi^g$. + + This shows that + \[ + \{z \in a : M[g] \models \phi(z,x_1,\ldots,x_k)\} \subseteq \pi^g. + \] + The other inclusion is easy. + +\end{proof} diff --git a/logic2.tex b/logic2.tex index 4686286..12b278c 100644 --- a/logic2.tex +++ b/logic2.tex @@ -45,6 +45,7 @@ \input{inputs/lecture_19} \input{inputs/lecture_20} \input{inputs/lecture_21} +\input{inputs/lecture_22} \cleardoublepage