43 lines
1.2 KiB
TeX
43 lines
1.2 KiB
TeX
|
\tutorial{02}{}{}
|
||
|
|
||
|
\subsection{Exercise 1}
|
||
|
|
||
|
(Cantor-Bendixson Derrivative)
|
||
|
|
||
|
For $A \subseteq \R$
|
||
|
Let $A^{(0)} \coloneqq A$,
|
||
|
$A^{(\alpha+1)} \coloneqq \left( A^{(\alpha)}' \right)$
|
||
|
and $A^{(\lambda)} \coloneqq \bigcap_{\alpha < \lambda} A^{(\alpha)}$.
|
||
|
|
||
|
We want to find $A_i$ such that $A_i^{(i)} = \emptyset$,
|
||
|
but $A_i^{(j)} \neq \emptyset$ for all $j < i$.
|
||
|
|
||
|
Let $A_1 = \{0\}$,
|
||
|
$A_2 = \{0\} \cup \{\frac{1}{n+1} | n < \omega\}$
|
||
|
and so on
|
||
|
(in every step add sequences contained in a gap of the previous set converging to the points of the previous set):
|
||
|
Define intervals:
|
||
|
For all $x \in A_n \setminus \{\max A_n\}$
|
||
|
let $\epsilon_{x,n} \coloneqq \min \{y \in A_n | y > x\} - x$
|
||
|
and
|
||
|
let $I_x^{n} \coloneqq (x, \epsilon_{x,n} + x)$.
|
||
|
Construct a sequence converging to $x$,
|
||
|
$(x_n)_{n < \omega}$,
|
||
|
where $x +\frac{\epsilon_{x,n}}{n+2}$.
|
||
|
This yields $A_n$ for every $n < \omega$,
|
||
|
such that $A_n^\left( 1 \right) = A_{n-1}$,
|
||
|
by setting
|
||
|
\[
|
||
|
A_{n+1} \coloneqq A_n \cup \bigcup_{x \in A_n \setminus \left( \bigcup_{i=1}^n I^1_{x_i} \righ))} \{(x_n)_{n < \omega} | x_n + x+\frac{\epsilon_{x,n}}{n+1}\}
|
||
|
\]
|
||
|
|
||
|
Let $A_\omega \coloneqq \bigcup_{n < \omega} A_n$.
|
||
|
Let $A_{\omega + 1} \coloneqq \{0\} \cup \{ \frac{1}{n}A_\omega + \frac{1}{n} | n < \omega\}$
|
||
|
and so on.
|
||
|
|
||
|
|
||
|
|
||
|
|
||
|
|
||
|
|