2023-10-30 15:52:49 +01:00
|
|
|
\lecture{05}{2023-10-30}{}
|
|
|
|
|
|
|
|
\begin{definition}
|
|
|
|
Zermelo:
|
2023-11-13 20:21:51 +01:00
|
|
|
\[\Zermelo \coloneqq \AxExt + \AxFund + \AxPair + \AxUnion + \AxPow + \AxInf + \AxAus_{\phi}\]
|
2023-10-30 15:52:49 +01:00
|
|
|
|
|
|
|
Zermelo and Fraenkl:
|
|
|
|
\[
|
2023-11-13 20:21:51 +01:00
|
|
|
{\ZF} \coloneqq Z + \AxRep_{\phi} % TODO fix parenthesis
|
2023-10-30 15:52:49 +01:00
|
|
|
\]
|
|
|
|
|
|
|
|
\[
|
2023-11-13 20:21:51 +01:00
|
|
|
{\ZFC} \coloneqq \ZF + \AxC
|
2023-10-30 15:52:49 +01:00
|
|
|
\]
|
|
|
|
|
|
|
|
Variants:
|
|
|
|
|
|
|
|
\[
|
2023-11-13 20:21:51 +01:00
|
|
|
{\ZFC^{-}} \coloneqq \ZFC \setminus \AxPow.
|
2023-10-30 15:52:49 +01:00
|
|
|
\]
|
|
|
|
\[
|
2023-11-13 20:21:51 +01:00
|
|
|
{\ZFC^{-\infty}} \coloneqq \ZFC \setminus \AxInf
|
2023-10-30 15:52:49 +01:00
|
|
|
\]
|
|
|
|
\end{definition}
|
|
|
|
|
|
|
|
\begin{definition}
|
|
|
|
For sets $x, y$ we write
|
|
|
|
$(x,y)$ for $\{\{x\}, \{x,y\}\}$.
|
|
|
|
\end{definition}
|
|
|
|
\begin{remark}
|
|
|
|
Note that $(x,y) = (a,b) \iff x = a \land y = b$.
|
|
|
|
$\ZFC$ proves that $(x,y)$ always exists.
|
|
|
|
\end{remark}
|
|
|
|
|
|
|
|
\begin{definition}
|
|
|
|
For sets $x_1,\ldots, x_{n+1}$
|
|
|
|
we write
|
|
|
|
\[
|
|
|
|
(x_1,\ldots,x_{n+1}) \coloneqq ((x_1,\ldots,x_n), x_{n+1})
|
2023-11-13 20:21:51 +01:00
|
|
|
\]
|
2023-10-30 15:52:49 +01:00
|
|
|
where we assume that $(x_1,\ldots,x_{n})$
|
|
|
|
is already defined.
|
|
|
|
\end{definition}
|
|
|
|
\begin{definition}
|
2023-11-13 20:21:51 +01:00
|
|
|
The \vocab{cartesian product}
|
2023-10-30 15:52:49 +01:00
|
|
|
$a \times b$ of two sets $a$ and $b$
|
|
|
|
is defined to be $a \times b \coloneqq \{(x,y) | x \in a \land y \in b\}$.
|
|
|
|
\end{definition}
|
|
|
|
\begin{fact}
|
|
|
|
$a \times b$ exists.
|
|
|
|
\end{fact}
|
|
|
|
\begin{proof}
|
2023-11-13 20:21:51 +01:00
|
|
|
Use \AxAus over $\cP(\cP(a \cup b))$.
|
2023-10-30 15:52:49 +01:00
|
|
|
\end{proof}
|
|
|
|
|
|
|
|
\begin{definition}
|
|
|
|
For $a_1,\ldots, a_n$
|
|
|
|
we define
|
|
|
|
\[
|
|
|
|
a_1 \times \ldots \times a_n \coloneqq \left( a_1 \times \ldots\times a_{n-1} \right) \times a_n.
|
|
|
|
\]
|
|
|
|
recursively.
|
|
|
|
|
|
|
|
For $a = a_1 = \ldots = a_n$,
|
|
|
|
we write $a^n$ for $a_1 \times \ldots \times a_n$.
|
|
|
|
\end{definition}
|
|
|
|
|
|
|
|
\begin{remark}
|
|
|
|
The fact that $\ZFC$ can be used
|
|
|
|
to encode all of mathematics,
|
|
|
|
should not be overestimated.
|
|
|
|
It is clumsy to do it that way.
|
|
|
|
Nobody cares anymore.
|
|
|
|
There are better foundations.
|
|
|
|
What makes $\ZFC$ special
|
|
|
|
is that it allows to investigate infinity.
|
|
|
|
\end{remark}
|
|
|
|
|
|
|
|
\begin{definition}
|
|
|
|
An \vocab{$n$-ary relation} $R$ is a subset
|
|
|
|
of $a_1 \times \ldots \times a_n$
|
|
|
|
for some sets $a_1,\ldots,a_n$.
|
|
|
|
|
|
|
|
For a \vocab{binary relation} $R $ (i.e.~$n = 2$)
|
|
|
|
we define
|
|
|
|
\[
|
|
|
|
\dom(R) \coloneqq \{ x | \exists y.~(x,y) \in R\}
|
|
|
|
\]
|
|
|
|
and
|
|
|
|
\[
|
|
|
|
\ran(R) \coloneqq \{ y | \exists x.~(x,y) \in R\}.
|
|
|
|
\]
|
|
|
|
\end{definition}
|
|
|
|
\begin{definition}
|
|
|
|
A binary relation $R$
|
|
|
|
is a \vocab{function}
|
|
|
|
iff
|
|
|
|
\[
|
|
|
|
\forall x \in \dom(R).~\exists y.~\forall y'.~(y' = y \iff xRy').
|
|
|
|
\]
|
|
|
|
|
|
|
|
A function $f$ is a function from $d$ to $b$
|
|
|
|
iff $d = \dom(f)$ and $\ran(f) \subseteq b$.
|
|
|
|
|
|
|
|
We write $f\colon d \to b$.
|
|
|
|
The set of all function from $d$ to $b$
|
|
|
|
is denoted by ${}^d b$ or $b^d$.
|
|
|
|
\end{definition}
|
|
|
|
|
|
|
|
\begin{fact}
|
|
|
|
Given sets $d, b$ then
|
|
|
|
${}^d b$ exists.
|
|
|
|
\end{fact}
|
|
|
|
\begin{proof}
|
2023-11-13 20:21:51 +01:00
|
|
|
Apply again \AxAus over $\cP(d \times b)$.
|
2023-10-30 15:52:49 +01:00
|
|
|
\end{proof}
|
|
|
|
|
|
|
|
\begin{definition}
|
|
|
|
We all know how
|
|
|
|
\vocab{injective}, \vocab{surjective}, \vocab{bijective}, $\ldots$
|
|
|
|
are defined.
|
|
|
|
% TODO
|
|
|
|
\end{definition}
|
|
|
|
|
|
|
|
\begin{notation}
|
|
|
|
For $f\colon d \to b$ and $a \subseteq d$
|
|
|
|
we write $f''a \coloneqq \{f(x) : x \in a\}$
|
|
|
|
(the \vocab{pointwise image} of $a$ under $f$).
|
|
|
|
|
|
|
|
(In other mathematical fields, this is sometimes
|
|
|
|
denoted as $f(a)$. We don't do that here.)
|
|
|
|
\end{notation}
|
|
|
|
|
|
|
|
\begin{definition}
|
|
|
|
A binary relation $\le $ on a set $a$
|
|
|
|
is a \vocab{partial order}
|
|
|
|
iff $\le $ is
|
|
|
|
\begin{itemize}
|
|
|
|
\item \vocab{reflexive},
|
|
|
|
i.e.~$x \le x$,
|
|
|
|
\item \vocab{antisymmetric} (sometimes
|
|
|
|
this is also called \vocab{symmetric}),
|
|
|
|
i.e.~
|
|
|
|
$x \le y \land x \le y \implies x = y$,
|
|
|
|
and
|
|
|
|
\item \vocab{transitive},
|
|
|
|
i.e.~$x \le y \land x \le z \implies x \le z$.
|
|
|
|
\end{itemize}
|
|
|
|
|
|
|
|
If additionally $\forall x,y.~(x\le y \lor y \le x)$,
|
|
|
|
$\le $ is called a \vocab{linear order}
|
|
|
|
(or \vocab{total order}).
|
|
|
|
\end{definition}
|
|
|
|
|
|
|
|
\begin{definition}
|
|
|
|
Let $(a, \le )$ be a partial order.
|
|
|
|
Let $b \subseteq a$.
|
|
|
|
We say that $x$ is a \vocab{maximal element}
|
|
|
|
of $b$
|
|
|
|
iff
|
|
|
|
\[
|
|
|
|
x \in b \land \lnot \exists y \in b .~(y > x).b .~(y > x).
|
|
|
|
\]
|
|
|
|
|
|
|
|
In a similar way we define \vocab[Minimal element]{minimal elements}
|
|
|
|
of $b$.
|
|
|
|
We say that $x $ is an \vocab{upper bound}
|
|
|
|
of $b$ if $\forall y \in b.~(x \ge y)$.
|
|
|
|
Similarly \vocab[Lower bound]{lower bounds}
|
|
|
|
are defined.
|
|
|
|
|
|
|
|
We say $x = \sup(b)$ if $x$ is the minimum
|
|
|
|
of the set of upper bounds of $b$.
|
|
|
|
(This does not necessarily exist.)
|
|
|
|
Similarly $\inf(b)$ is defined.
|
|
|
|
\end{definition}
|
|
|
|
\begin{definition}
|
|
|
|
Let $(a, \le_a)$ and $(b, \le_b)$
|
|
|
|
be two partial orders.
|
|
|
|
Then a function $f\colon a\to b$ is caled
|
|
|
|
\vocab{order preserving}
|
|
|
|
iff
|
|
|
|
\[
|
|
|
|
\forall x,y \in a.~(x \le_a y) \iff f(x) \le_b f(y).
|
|
|
|
\]
|
|
|
|
An order preserving bijection
|
|
|
|
is called an isomorphism.
|
|
|
|
We write $(a,\le_a) \cong (b, \le_b)$
|
|
|
|
if they are isomorphic.
|
|
|
|
\end{definition}
|
|
|
|
\begin{definition}
|
|
|
|
Let $(a,\le)$ be a partial order.
|
|
|
|
Then $(a,\le)$ is
|
|
|
|
a \vocab{well-order},
|
|
|
|
iff
|
|
|
|
\[
|
|
|
|
\forall b \subseteq a.~b\neq \emptyset \implies \min(b) \text{ exists}.
|
|
|
|
\]
|
|
|
|
\end{definition}
|
|
|
|
|
|
|
|
\begin{fact}
|
|
|
|
Let $(a, \le )$ be a well-order,
|
|
|
|
then $(a, \le )$ is total.
|
|
|
|
\end{fact}
|
|
|
|
\begin{proof}
|
|
|
|
For $x,y \in a$
|
|
|
|
consider $\{x,y\}$.
|
|
|
|
Then $\min(\{x,y\}) \le x,y$.
|
|
|
|
\end{proof}
|
|
|
|
|
|
|
|
\begin{lemma}
|
|
|
|
Let $(a, \le)$ be a well-order.
|
|
|
|
Let $f\colon a \to a$
|
|
|
|
be an order preserving map.
|
|
|
|
Then $f(x) \ge x$ for all $x \in a$.
|
|
|
|
\end{lemma}
|
|
|
|
\begin{proof}
|
|
|
|
Consider $x_0 \coloneqq \min(\{x \in a | f(x) < x\})$.
|
|
|
|
% Then $y_0 \coloneqq f(x_0) < x_0$,
|
|
|
|
% so $f(f(y_0)) < f(x_0) < x_0 = y_0$.
|
|
|
|
\end{proof}
|
|
|
|
|
|
|
|
\begin{lemma}
|
|
|
|
If $(a, \le )$ is a well order
|
|
|
|
and $f\colon (a, \le) \leftrightarrow (a, \le)$
|
|
|
|
is an isomorphism,
|
|
|
|
then $f$ is the identity.
|
|
|
|
\end{lemma}
|
|
|
|
\begin{proof}
|
|
|
|
By the last lemma, we know that
|
|
|
|
$f(x) \ge x$ and $f^{-1}(x) \ge x$.
|
|
|
|
\end{proof}
|
|
|
|
|
|
|
|
\begin{lemma}
|
|
|
|
Suppose $(a, \le_a)$ and $(b, \le_b)$ are well-orderings
|
|
|
|
such that $(a, \le_a) \cong (b, \le_b)$.
|
|
|
|
Then there is a unique isomorphism
|
|
|
|
$f\colon a \to b$.
|
|
|
|
\end{lemma}
|
|
|
|
\begin{proof}
|
|
|
|
Let $f,g$ be isomorphisms
|
|
|
|
and consider $g^{-1}\circ f \colon (a, \le ) \xrightarrow{\cong} (a, \le )$.
|
|
|
|
We have already shown that $g^{-1}\circ f$ must be the identity,
|
|
|
|
so $g = f$.
|
|
|
|
\end{proof}
|
|
|
|
|
|
|
|
\begin{definition}
|
|
|
|
If $(a, \le )$ is a partial order
|
|
|
|
and if $x \in a$,
|
|
|
|
then write $(a, \le )\defon{x}$
|
|
|
|
for $(\{y \in a | y \le x\}, \le \cap \{y \in a | y \le x\}^2)$.
|
|
|
|
\end{definition}
|
|
|
|
\begin{theorem}
|
|
|
|
Let $(a,\le_a)$ and $(b,\le_b)$ be well-orders.
|
|
|
|
Then exactly one of the following three holds:
|
|
|
|
\begin{enumerate}[(i)]
|
|
|
|
\item $a \cong b$,
|
|
|
|
\item $\exists x \in b.~a \cong b\defon{x}$,
|
|
|
|
\item $\exists x \in a.~a\defon{x} \cong b$.
|
|
|
|
\end{enumerate}
|
|
|
|
\end{theorem}
|
|
|
|
\begin{proof}
|
|
|
|
Let us define a relation $r \subseteq a \times b$ as follows:
|
|
|
|
Let $(x,y) \in r$ iff $a\defon{x} \cong b\defon{y}$.
|
|
|
|
By the previous lemma,
|
|
|
|
for each $x \in a$, there is at most one $y \in b$
|
|
|
|
such that $(x,y) \in r$
|
|
|
|
and vice versa,
|
|
|
|
so $r$ is an injective function
|
|
|
|
from a subset of $a$ to a subset of $b$.
|
|
|
|
\begin{claim}
|
|
|
|
$r$ is order preserving:
|
|
|
|
\end{claim}
|
|
|
|
\begin{subproof}
|
|
|
|
If $x <_a x'$, then consider the unique $y'$
|
|
|
|
such that $a\defon{x'} \cong b\defon{y'}$.
|
|
|
|
The isomorphism restricts to $a\defon{x} \cong b\defon{y}$
|
|
|
|
for some $y <_b y'$.
|
|
|
|
\end{subproof}
|
|
|
|
|
|
|
|
\begin{claim}
|
|
|
|
$\dom(r) = a \lor \ran(r) = b$.
|
|
|
|
\end{claim}
|
|
|
|
\begin{subproof}
|
|
|
|
Suppose that $\dom(r) \subsetneq a$
|
2023-11-05 00:50:26 +01:00
|
|
|
and $\ran(r) \subsetneq b$.
|
2023-10-30 15:52:49 +01:00
|
|
|
|
|
|
|
Let $x \coloneqq \min(a \setminus \dom(r))$
|
|
|
|
and $y \coloneqq \min(b\setminus \ran(r))$.
|
|
|
|
Then $(a,\le)\defon{x} \cong (b, \le)\defon{y}$.
|
|
|
|
But now $(x,y) \in r$ which is a contradiction.
|
|
|
|
\end{subproof}
|
|
|
|
\end{proof}
|