2023-11-04 23:28:39 +01:00
|
|
|
|
\lecture{04}{}{ZFC}
|
|
|
|
|
|
|
|
|
|
% Model-theoretic concepts and ultraproducts
|
|
|
|
|
|
|
|
|
|
\section{$\ZFC$}
|
|
|
|
|
|
|
|
|
|
% 1900, Russel's paradox
|
|
|
|
|
Russel's Paradox:
|
|
|
|
|
$\ZFC$ stands for
|
|
|
|
|
\begin{itemize}
|
|
|
|
|
\item \textsc{Zermelo}’s axioms (1905), % crises around 19000
|
|
|
|
|
\item \vocab{Fraenkel}'s axioms,
|
|
|
|
|
\item the axiom of choice.
|
|
|
|
|
\end{itemize}
|
|
|
|
|
\begin{notation}
|
|
|
|
|
We write $x \subseteq y$ as a shorthand
|
|
|
|
|
for $\forall z.~(z \in x \implies z \in y)$.
|
|
|
|
|
|
|
|
|
|
We write $x = \emptyset$ for $\lnot \exists y . y \in x$
|
|
|
|
|
and $x \cap y = \emptyset$ for $\lnot \exists z . ~(z \in x \land z \in y)$.
|
|
|
|
|
|
|
|
|
|
We use $x = \{y,z\}$
|
|
|
|
|
for
|
|
|
|
|
\[
|
|
|
|
|
y \in x \land z \in x \land \forall a .~(a \in x \implies a = y \lor a = z).
|
|
|
|
|
\]
|
|
|
|
|
|
|
|
|
|
Let $x = \bigcup y$ denote
|
|
|
|
|
\[
|
|
|
|
|
\forall z.~(z \in x \iff \exists v.(v \in y \land z \in v)).
|
|
|
|
|
\]
|
|
|
|
|
\end{notation}
|
|
|
|
|
$\ZFC$ consists of the following axioms:
|
|
|
|
|
\begin{axiom}[\vocab{Extensionality}]
|
|
|
|
|
\[
|
|
|
|
|
\forall x.~\forall y.~(x = y \iff \forall z.~(z \in x \iff z \in y)).
|
|
|
|
|
\]
|
|
|
|
|
Equivalent statements using $\subseteq$:
|
|
|
|
|
\[
|
|
|
|
|
\forall x.~\forall y.~(x = y \iff (x \subseteq y \land y \subseteq x)).
|
|
|
|
|
\]
|
|
|
|
|
\end{axiom}
|
|
|
|
|
|
|
|
|
|
\begin{axiom}[\vocab{Foundation}]
|
|
|
|
|
Every set has an $\in$-minimal member:
|
|
|
|
|
\[
|
|
|
|
|
\forall x .~ \left(\exists a .~(a\in x) \implies
|
|
|
|
|
\exists y .~ y \in x \land \lnot \exists z.~(z \in y \land z \in x)\right).
|
|
|
|
|
\]
|
|
|
|
|
Shorter:
|
|
|
|
|
\[
|
|
|
|
|
\forall x.~(x \neq \emptyset \implies \exists y \in x .~ x \cap y = \emptyset).
|
|
|
|
|
\]
|
|
|
|
|
\end{axiom}
|
|
|
|
|
\begin{axiom}[\vocab{Pairing}]
|
|
|
|
|
\[
|
|
|
|
|
\forall x .~\forall y.~ \exists z.~(z = \{x,y\}).
|
|
|
|
|
\]
|
|
|
|
|
\end{axiom}
|
|
|
|
|
\begin{remark}
|
|
|
|
|
Together with the axiom of pairing,
|
|
|
|
|
the axiom of foundation implies
|
|
|
|
|
that there can not be a set $x$ such that
|
|
|
|
|
$x \in x$:
|
|
|
|
|
Suppose that $x \in x$.
|
|
|
|
|
Then $x$ is the only element of $\{x\}$,
|
|
|
|
|
but $x \cap \{x\} \neq \emptyset$.
|
|
|
|
|
|
|
|
|
|
A similar argument shows that chains like
|
|
|
|
|
$x_0 \in x_1 \in x_2 \in x_0$
|
|
|
|
|
are ruled out as well.
|
|
|
|
|
\end{remark}
|
|
|
|
|
|
|
|
|
|
\begin{axiom}[\vocab{Union}]
|
|
|
|
|
\[
|
|
|
|
|
\forall x.~\exists y.~(y = \bigcup x).
|
|
|
|
|
\]
|
|
|
|
|
\end{axiom}
|
|
|
|
|
|
|
|
|
|
\begin{axiom}[\vocab{Powerset}]
|
|
|
|
|
We write $x = \cP(y)$
|
|
|
|
|
for
|
|
|
|
|
$\forall z.~(z \in x \iff x \subseteq z)$.
|
|
|
|
|
The powerset axiom (PWA) states
|
|
|
|
|
\[
|
|
|
|
|
\forall x.~\exists y.~y=\cP(x).
|
|
|
|
|
\]
|
|
|
|
|
\end{axiom}
|
|
|
|
|
\begin{axiom}[\vocab{Infinity}]
|
|
|
|
|
A set $x$ is called \vocab{inductive},
|
|
|
|
|
iff $\emptyset \in x \land \forall y.~(y \in x \implies y \cup \{y\} \in x)$.
|
|
|
|
|
|
|
|
|
|
The axiom of infinity says that there exists and inductive set.
|
|
|
|
|
\end{axiom}
|
|
|
|
|
|
2023-11-05 00:50:26 +01:00
|
|
|
|
\begin{axiomschema}[\vocab{Separation}]
|
2023-11-04 23:28:39 +01:00
|
|
|
|
% TODO :(Aus)
|
|
|
|
|
Let $\phi$ be some fixed
|
|
|
|
|
fist order formula in $\cL_\in$.
|
|
|
|
|
Then $\text{(Aus)}_{\phi}$
|
|
|
|
|
states
|
|
|
|
|
\[
|
|
|
|
|
\forall v_1 .~\forall v_p .~\forall a .~\exists b .~\forall x.~
|
|
|
|
|
(x \in b \implies x \in a \land \phi(x,v_1,v_p))
|
|
|
|
|
\]
|
|
|
|
|
|
|
|
|
|
Let us write $b = \{x \in a | \phi(x)\}$
|
|
|
|
|
for $\forall x.~(x \in b \iff x \in a \land f(x))$.
|
|
|
|
|
Then (Aus) can be formulated as
|
|
|
|
|
\[
|
|
|
|
|
\forall a.~\exists b.~(b = \{x \in a; \phi(x)\}).
|
|
|
|
|
\]
|
2023-11-05 00:50:26 +01:00
|
|
|
|
\end{axiomschema}
|
2023-11-04 23:28:39 +01:00
|
|
|
|
|
|
|
|
|
\begin{notation}
|
|
|
|
|
\todo{$\cap, \setminus, \bigcap$}
|
|
|
|
|
% We write $z = x \cap y$ for $\forall u.~((u \in z) \implies u \in x \land u \in y)$,
|
|
|
|
|
% $Z = x \setminus y$ for ...
|
|
|
|
|
% $x = \bigcap y$ for ...
|
|
|
|
|
\end{notation}
|
|
|
|
|
\begin{remark}
|
|
|
|
|
(Aus) proves that
|
|
|
|
|
\begin{itemize}
|
|
|
|
|
\item $\forall a.~\forall b.~\exists c.~(c = a \cap b)$,
|
|
|
|
|
\item $\forall a.~\forall b.~\exists c.~(c = a \setminus b)$,
|
|
|
|
|
\item $\forall a.~\exists b.~(b = \bigcap a)$.
|
|
|
|
|
\end{itemize}
|
|
|
|
|
\end{remark}
|
2023-11-05 00:50:26 +01:00
|
|
|
|
\begin{axiomschema}[\vocab{Replacement} (Fraenkel)]
|
2023-11-04 23:28:39 +01:00
|
|
|
|
Let $\phi$ be some $\cL_{\in }$ formula.
|
|
|
|
|
Then
|
|
|
|
|
\[
|
|
|
|
|
\forall v_1 .~\exists b.~\forall y.~(y \in b \iff \exists x .~(x \in a \land \phi(x,y,v_1,v_p))).
|
|
|
|
|
\]
|
2023-11-05 00:50:26 +01:00
|
|
|
|
\end{axiomschema}
|
2023-11-04 23:28:39 +01:00
|
|
|
|
|
|
|
|
|
\begin{axiom}[\vocab{Choice}]
|
|
|
|
|
Every family of non-empty sets has a \vocab{choice set}:
|
2023-11-05 00:50:26 +01:00
|
|
|
|
\begin{IEEEeqnarray*}{rCl}
|
|
|
|
|
\forall x .~&(&\\
|
|
|
|
|
&& ((\forall y \in x.~y \neq \emptyset) \land (\forall y \in x .~\forall y' \in x .~(y \neq y' \implies y \cap y' = \emptyset))\\
|
|
|
|
|
&& \implies\exists z.~\forall y \in x.~\exists u.~(z \cap y = \{u\})\\
|
|
|
|
|
&)&
|
|
|
|
|
\end{IEEEeqnarray*}
|
2023-11-04 23:28:39 +01:00
|
|
|
|
\end{axiom}
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
% TODO Hier weiter
|