252 lines
9.1 KiB
TeX
252 lines
9.1 KiB
TeX
\pagebreak
|
|
\lecture{22}{2023-07-04}{Introduction Markov Chains II}
|
|
\section{Markov Chains}
|
|
\todo{Merge this with the end of lecture 21}
|
|
|
|
\begin{goal}
|
|
We want to start with the basics of the theory of Markov chains.
|
|
\end{goal}
|
|
|
|
\begin{example}[Markov chains with two states]
|
|
Suppose there are two states of a phone line,
|
|
$0$,``free'', or $1$, ``busy''.
|
|
We assume that the state only changes at discrete units of time
|
|
and model this as a sequence of random variables.
|
|
Assume
|
|
\begin{IEEEeqnarray*}{rCl}
|
|
\bP[X_{n+1} = 0 | X_n = 0] &=& p\\
|
|
\bP[X_{n+1} = 0 | X_n = 1] &=& (1-p)\\
|
|
\bP[X_{n+1} = 1 | X_n = 0] &=& q\\
|
|
\bP[X_{n+1} = 1 | X_n = 1] &=& (1-q)
|
|
\end{IEEEeqnarray*}
|
|
for some $p,q \in (0,1)$.
|
|
We can write this as a matrix
|
|
\begin{IEEEeqnarray*}{rCl}
|
|
P &=& \begin{pmatrix}
|
|
p & (1-p) \\
|
|
q & (1-q)
|
|
\end{pmatrix}
|
|
\end{IEEEeqnarray*}
|
|
Note that the rows of this matrix sum up to $1$.
|
|
|
|
Additionally, we make the following assmption:
|
|
Given that at some time $n$, the phone is in state $i \in \{0,1\}$,
|
|
the behavior of the phone after time $n$ does not depend
|
|
on the way, the phone reached state $i$.
|
|
|
|
\begin{question}
|
|
Suppose $X_0 = 0$.
|
|
What is the probability, that the phone will be free at times
|
|
$1 \& 2$ and will become busy at time $3$,
|
|
i.e.~what is $\bP[X_1 = 0, X_2 = 0, X_3 = 1]$?
|
|
\end{question}
|
|
We have
|
|
\begin{IEEEeqnarray*}{rCl}
|
|
&&\bP[X_1 = 0, X_2 = 0, X_3 = 1]\\
|
|
&=& \bP[X_3 = 0 | X_2 = 0, X_1 = 0] \bP[X_2 = 0, X_1 = 0]\\
|
|
&=& \bP[X_3 = 0 | X_2 = 0] \bP[X_2 = 0, X_1 = 0]\\
|
|
&=& \bP[X_3 = 0 | X_2 = 0] \bP[X_2 = 0 | X_1 = 0] \bP[X_1 = 0]\\
|
|
&=& P_{0,1} P_{0,0} P_{0,0}
|
|
\end{IEEEeqnarray*}
|
|
|
|
\begin{question}
|
|
Assume $X_0 = 0$. What is $\bP[X_3 = 1]$?
|
|
\end{question}
|
|
For $\{X_3 = 1\}$ to happen, we need to look at the following
|
|
disjoint events:
|
|
\begin{IEEEeqnarray*}{rCl}
|
|
\bP(\{X_3 = 1, X_2 = 0, X_1 = 0\}) &=& P_{0,1} P_{0,0}^2,\\
|
|
\bP(\{X_3 = 1, X_2 = 0, X_1 = 1\}) &=& P_{0,1}^2 P_{1,0},\\
|
|
\bP(\{X_3 = 1, X_2 = 1, X_1 = 0\}) &=& P_{0,0} P_{0,1} P_{1,1},\\
|
|
\bP(\{X_3 = 1, X_2 = 1, X_1 = 1\}) &=& P_{0,1} P_{1,1}^2.
|
|
\end{IEEEeqnarray*}
|
|
|
|
More generally, consider a Matrix $P \in (0,1)^{n \times n}$
|
|
whose rows sum up to $1$.
|
|
Then we get a Markov Chain with $n$ states
|
|
by defining
|
|
\[\bP[X_{n+1} = i | X_{n} = j] = P_{i,j}.\]
|
|
\end{example}
|
|
|
|
\begin{definition}
|
|
Let $E$ denote a \vocab{discrete state space},
|
|
usually $E = \{1,\ldots, N\}$
|
|
or $E = \N$ or $E = \Z$.
|
|
|
|
Let $\alpha$ be a probability measure on $E$.
|
|
We say that $(p_{i,j})_{i \in E, j \in E}$ is a
|
|
\vocab{transition probability matrix}, if
|
|
\[
|
|
\forall i,j \in E .~p_{i,j} \ge 0 \land \forall i \in E \sum_{j \in E} p_{i,j} = 1.
|
|
\]
|
|
|
|
Given a triplet $(E, \alpha, P)$, we say that a stochastic process $(X_n)_{n \ge 0}$,
|
|
i.e.~$X_n: \Omega \to E$, is a \vocab[Markov chain!discrete]%
|
|
{Markov chain taking values
|
|
on the state space $E$
|
|
with initial distribution $\alpha$
|
|
and transition probability matrix $P$},
|
|
if the following conditions hold:
|
|
\begin{enumerate}[(i)]
|
|
\item $\bP[X_0 = i] = \alpha(i)$
|
|
for all $i \in E$,
|
|
|
|
\item \begin{IEEEeqnarray*}{rCl}
|
|
&&\bP[X_{n+1} = i_{n+1} | X_0 = i_0, X_1 = i_1, \ldots, X_{n} = i_{n}]\\
|
|
&=& \bP[X_{n+1} = i_{n+1} | X_n = i_n]
|
|
\end{IEEEeqnarray*}
|
|
for all $n = 0, \ldots$, $i_0,\ldots, i_{n+1} \in E$
|
|
(provided $\bP[X_0 = i_0, X_1 = i_1, \ldots, X_n = i_n] \neq 0$ ).
|
|
\end{enumerate}
|
|
|
|
\end{definition}
|
|
\begin{fact}
|
|
For all $n \in \N_0$ and $i_0,\ldots,i_n \in E$, we have
|
|
\[
|
|
\bP[X_0 = i_0, X_1 = i_1, \ldots, X_n = i_n] =
|
|
\alpha(i_0) \cdot p_{i_0,i_1} \cdot p_{i_1,i_2} \cdot \ldots \cdot p_{i_{n-1}, i_n}.
|
|
\]
|
|
\end{fact}
|
|
\begin{fact}
|
|
For all $n \in \N$, $i_n \in E$, we have
|
|
\[
|
|
\bP[X_n = i_n] = \sum_{i_0, \ldots, i_{n-1} \in E} \alpha_{i_0} p_{i_0,i_1} \cdot \ldots \cdot p_{i_{n-1}, i_n}.
|
|
\]
|
|
\end{fact}
|
|
\begin{example}[Simple random walk on $\Z$]
|
|
Let $E \coloneqq \Z$, $(\xi_n)_n$ i.i.d.~with $\bP[\xi_i = 1] = \bP[\xi_i = -1] = \frac{1}{2}$.
|
|
Let $X_0 = 0, X_n = \xi_1 + \ldots + \xi_n$.
|
|
|
|
Let $\alpha = \delta_0 \in M_1(\Z)$.
|
|
Consider
|
|
\begin{IEEEeqnarray*}{rCl}
|
|
P &=&
|
|
\begin{pmatrix}
|
|
& \ddots & \ddots & \ddots & & & & & 0\\
|
|
\ldots & 0 & \frac{1}{2} & 0 & \frac{1}{2} & 0 & \ldots \\
|
|
& \ldots & 0 & \frac{1}{2} & 0 & \frac{1}{2} & 0 & \ldots \\
|
|
& & \ldots & 0 & \frac{1}{2} & 0 & \frac{1}{2} & 0 & \ldots \\
|
|
0 & & & & & \ddots & \ddots & \ddots & \\
|
|
\end{pmatrix}
|
|
\end{IEEEeqnarray*}
|
|
|
|
\end{example}
|
|
|
|
% \begin{example}
|
|
% Consider a game, where a player wins or loses $1 €$ per round of the game.
|
|
% Let $p$ be the probability of winning.
|
|
% The player plays until they lose all money.
|
|
% Let $X_n$ be the capital of the gambler at time $n$.
|
|
% Define a matrix $P$
|
|
% by $P_{0,0} = 1$, $P_{i,i+1} = p$, $P_{i+1,i} = (1-p)$
|
|
% and all other entries $0$.
|
|
% \end{example}
|
|
|
|
\begin{definition}
|
|
Let $E$ be a complete, separable metric space,
|
|
$\alpha \in M_1(E)$.
|
|
For every $x \in E$,
|
|
let $\mathbf{P}(x, \cdot )$ be a probability measure on $E$.%
|
|
\footnote{$\mathbf{P}(x,\cdot )$ corresponds to a row of our matrix in the discrete case}
|
|
|
|
Given the triples $(E, \alpha, \{\mathbf{P}(x, \cdot )\}_{x \in E})$,
|
|
we say that a stochastic process $(X_n)_{n \ge 0}$
|
|
is a \vocab[Markov chain]{Markov chain taking values on $E$ %
|
|
with starting distribution $\alpha$ %
|
|
and transition probability $\{\mathbf{P}(x, \cdot )\}_{x \in E}$}
|
|
if
|
|
\begin{enumerate}[(i)]
|
|
\item $\bP[X_0 \in \cdot ] = \alpha(\cdot )$,
|
|
\item For all bounded, measurable $f: E \to \R$,
|
|
\[
|
|
\bE[f(X_{n+1}) | \cF_n] = \bE[f(X_{n+1}) | X_n]
|
|
= \int_E f(y) \mathbf{P}(X_n, \dif y) \text{ a.s.}
|
|
\]
|
|
\end{enumerate}
|
|
|
|
\end{definition}
|
|
\begin{remark}
|
|
This agrees with the definition in the discrete case,
|
|
as all bounded, measurable $f: E\to \R$ can be approximated
|
|
by simple functions,
|
|
i.e.~(ii) from the discrete case implies (ii) from the general definition.
|
|
\end{remark}
|
|
\begin{notation}
|
|
If $\{\mathbf{P}(x, \cdot )\}_{x \in E}$ is a transition probability,
|
|
then for all $f: E \to \R$ bounded and measurable,
|
|
define $\mathbf{P} : \cB_{\text{bdd}}(E) \to \cB_{\text{bdd}}$
|
|
by
|
|
\[
|
|
(\mathbf{P} f)(x) \coloneqq \int_E f(y) \mathbf{P}(x, \dif y).
|
|
\]
|
|
\end{notation}
|
|
We get the following fundamental link between martingales and Markov chains:
|
|
\begin{theorem}
|
|
\label{martingalesandmarkovchains}
|
|
Suppose $(E, \alpha, \{\mathbf{P}(x, \cdot )\}_{x \in E})$
|
|
is given.
|
|
Then a stochastic process $(X_n)_{n \ge 0}$ is a Markov chain
|
|
iff for every $f: E \to \R$ bounded, measurable,
|
|
\[
|
|
M_n(f) \coloneqq f(X_n) - f(X_0) - \sum_{j=1}^{n-1} (\mathbf{I} - \mathbf{P})f(X_j)
|
|
\]
|
|
is a martingale
|
|
with respect to the canonical filtration of $(X_n)$.
|
|
\end{theorem}
|
|
\begin{proof}
|
|
$\implies$
|
|
Fix some bounded, measurable $f : E \to \R$.
|
|
Then, for all $n$, $M_n(f)$ is bounded
|
|
and hence $M_n(f) \in L^1$.
|
|
$M_n(f)$ is $\cF_n$-measurable for all $n \in \N$.
|
|
|
|
In order to prove $\bE[M_{n+1}(f) | \cF_n] = M_n(f)$,
|
|
it suffices to show $\bE[M_{n+1}(f) - M_n(f) | \cF_n] = 0$ a.s.
|
|
|
|
We have
|
|
\begin{IEEEeqnarray*}{rCl}
|
|
\bE[M_{n+1}(f) - M_n(f) | \cF_n]
|
|
&=& \bE[f(X_{n+1} | \cF_n] - (\mathbf{P}f)(X_n)\\
|
|
&\overset{\text{Markov property}}{=}& (\mathbf{P}f)(X_n) - (\mathbf{P}f)(X_n)\\
|
|
&=& 0
|
|
\end{IEEEeqnarray*}
|
|
|
|
$\impliedby$
|
|
Suppose $(M_n(f))_n$ is a martingale for all bounded, measurable $f$.
|
|
By the martingale property, we have
|
|
\begin{IEEEeqnarray*}{rCl}
|
|
\bE[f(X_{n+1}) | X_n]
|
|
&=& (\mathbf{P}f)(X_n)\\
|
|
&=& \int f(y) \mathbf{P}(X_n, \dif y)
|
|
\end{IEEEeqnarray*}
|
|
This proves (ii).
|
|
\end{proof}
|
|
|
|
\begin{definition}
|
|
Given $\{\mathbf{P}(x, \cdot )\}_{x \in E}$,
|
|
we say that $f: E \to \R$ is \vocab{harmonic},
|
|
iff $f(x) = (\mathbf{P}f)(x)$
|
|
for all $x \in E$.
|
|
We call $f$ \vocab{super-harmonic},
|
|
if $(\mathbf{I} - \mathbf{P}) f \ge 0$
|
|
and \vocab{sub-harmonic},
|
|
if $(\mathbf{I} - \mathbf{P}) f \le 0$.
|
|
\end{definition}
|
|
\begin{corollary}
|
|
If $f$ is (sub/super) harmonic, then for every
|
|
$(E, \{\mathbf{P}(x, \cdot )\}_{x \in E}, \alpha)$
|
|
and every Markov chain $(X_n)_{n \ge 0}$,
|
|
we have that
|
|
$f(X_n)$ is a (sub/super) martingale.
|
|
\end{corollary}
|
|
|
|
\begin{question}
|
|
Given a set $A$ and a function $f$ on a superset of $A$.
|
|
Find a function $u$, such that $u$ is harmonic,
|
|
and $u = f$ on $A$.
|
|
\end{question}
|
|
|
|
Let $u(x) \coloneqq \bE_x[f(X_{T_A}]$,
|
|
where $\bE_x$ is the expectation with respect to the Markov chain
|
|
starting in $x$,
|
|
and $T_A$ is the stopping time defined by the Markov chain hitting $A$.
|