21 lines
390 B
TeX
21 lines
390 B
TeX
Important stuff not done in the lecture.
|
|
|
|
Moments:
|
|
|
|
$\bE[X^k]$
|
|
|
|
\begin{lemma}
|
|
Let $X, Y : \Omega \to [a,b]$
|
|
If $\bE[X^k] = \bE[Y^k]$,
|
|
for every $k \in \N_0$
|
|
then $X = Y$.
|
|
\end{lemma}
|
|
\begin{proof}
|
|
We have $\bE[p(X)] = \bE[p(Y)]$ for
|
|
every polynomial $p$.
|
|
Approximate $e^{\i t X}$
|
|
with polynomials and use Fourier transforms.
|
|
\end{proof}
|
|
|
|
|
|
Laplace transforms
|