266 lines
11 KiB
TeX
266 lines
11 KiB
TeX
\lecture{10}{2023-05-09}{}
|
|
|
|
% RECAP
|
|
|
|
First, we will prove some of the most important facts about Fourier transforms.
|
|
|
|
We consider $(\R, \cB(\R))$.
|
|
\begin{notation}
|
|
By $M_1 (\R)$ we denote the set of all probability measures on $\left( \R, \cB(\R) \right)$.
|
|
\end{notation}
|
|
|
|
For all $\bP \in M_1(\R)$ we define $\phi_{\bP}(t) = \int_{\R} e^{\i t x}\bP(\dif x)$.
|
|
If $X: (\Omega, \cF) \to (\R, \cB(\R))$ is a random variable, we write
|
|
$\phi_X(t) \coloneqq \bE[e^{\i t X}] = \phi_{\mu}(t)$,
|
|
where $\mu = \bP X^{-1}$.
|
|
|
|
|
|
\begin{refproof}{inversionformula}
|
|
We will prove that the limit in the RHS of \autoref{invf}
|
|
exists and is equal to the LHS.
|
|
Note that the term on the RHS is integrable, as
|
|
\[
|
|
\lim_{t \to 0} \frac{e^{-\i t b} - e^{-\i t a}}{- \i t} \phi(t) = a - b
|
|
\]
|
|
and note that $\phi(0) = 1$ and $|\phi(t)| \le 1$.
|
|
% TODO think about this
|
|
|
|
We have
|
|
\begin{IEEEeqnarray*}{rCl}
|
|
&&\lim_{T \to \infty} \frac{1}{2 \pi} \int_{-T}^T \int_{\R} \frac{e^{-\i t b}- e^{-\i t a}}{-\i t} e^{\i t x} \dif t \bP(\dif x)\\
|
|
&\overset{\text{Fubini for $L^1$}}{=}& \lim_{T \to \infty} \frac{1}{2 \pi} \int_{\R} \int_{-T}^T \frac{e^{-\i t b}- e^{-\i t a}}{-\i t} e^{\i t x} \dif t \bP(\dif x)\\
|
|
&=& \lim_{T \to \infty} \frac{1}{2 \pi} \int_{\R} \int_{-T}^T \frac{e^{\i t (b-x)}- e^{\i t (x-a)}}{-\i t} \dif t \bP(\dif x)\\
|
|
&=& \lim_{T \to \infty} \frac{1}{2 \pi} \int_{\R} \underbrace{\int_{-T}^T \left[ \frac{\cos(t (x-b)) - \cos(t(x-a))}{-\i t}\right] \dif t}_{=0 \text{, as the function is odd}} \bP(\dif x) \\
|
|
&& + \lim_{T \to \infty} \frac{1}{2\pi} \int_{\R}\int_{-T}^T \frac{\sin(t ( x - b)) - \sin(t(x-a))}{-t} \dif t \bP(\dif x)\\
|
|
&=& \lim_{T \to \infty} \frac{1}{\pi} \int_\R \int_{0}^T \frac{\sin(t(x-a)) - \sin(t(x-b))}{t} \dif t \bP(\dif x)\\
|
|
&\overset{\substack{\text{\autoref{fact:intsinxx},}\\\text{dominated convergence}}}{=}&
|
|
\frac{1}{\pi} \int -\frac{\pi}{2} \One_{x < a} + \frac{\pi}{2} \One_{x > a}
|
|
- (- \frac{\pi}{2} \One_{x < b} + \frac{\pi}{2} \One_{x > b}) \bP(\dif x)\\
|
|
&=& \frac{1}{2} \bP(\{a\} ) + \frac{1}{2} \bP(\{b\}) + \bP((a,b))\\
|
|
&=& \frac{F(b) + F(b-)}{2} - \frac{F(a) - F(a-)}{2}
|
|
\end{IEEEeqnarray*}
|
|
\end{refproof}
|
|
|
|
\begin{fact}
|
|
\label{fact:intsinxx}
|
|
\[
|
|
\int_0^\infty \frac{\sin x}{x} \dif x = \frac{\pi}{2}
|
|
\]
|
|
where the LHS is an improper Riemann-integral.
|
|
Note that the LHS is not Lebesgue-integrable.
|
|
It follows that
|
|
\begin{IEEEeqnarray*}{rCl}
|
|
\lim_{T \to \infty} \int_0^T \frac{\sin(t(x-a))}{t} \dif t &=&
|
|
\begin{cases}
|
|
- \frac{\pi}{2} &\text{if }x < a,\\
|
|
0 &\text{if }x = a,\\
|
|
\frac{\pi}{2}&\text{if } x > a.
|
|
\end{cases}
|
|
\end{IEEEeqnarray*}
|
|
\end{fact}
|
|
|
|
\begin{theorem} % Theorem 3
|
|
\label{thm:lec10_3}
|
|
Let $\bP \in M_1(\R)$ such that $\phi_\bP \in L^1(\lambda)$.
|
|
Then $\bP$ has a continuous probability density given by
|
|
\[
|
|
f(x) = \frac{1}{2 \pi} \int_{\R} e^{-\i t x} \phi_{\bP}(t) \dif t.
|
|
\]
|
|
\end{theorem}
|
|
|
|
\begin{example}
|
|
\begin{itemize}
|
|
\item Let $\bP = \delta_{0}$.
|
|
Then
|
|
\[
|
|
\phi_{\bP}(t) = \int e^{\i t x} \delta_0(\dif x) = e^{\i t 0 } = 1
|
|
\]
|
|
\item Let $\bP = \frac{1}{2} \delta_1 + \frac{1}{2} \delta_{-1}$.
|
|
Then
|
|
\[
|
|
\phi_{\bP}(t) = \frac{1}{2} e^{\i t} + \frac{1}{2} e^{- \i t} = \cos(t)
|
|
\]
|
|
\end{itemize}
|
|
\end{example}
|
|
\begin{refproof}{thm:lec10_3}
|
|
Let $f(x) \coloneqq \frac{1}{2 \pi} \int_{\R} e^{ - \i t x} \phi(t) \dif t$.
|
|
\begin{claim}
|
|
If $x_n \to x$, then $f(x_n) \to f(x)$.
|
|
\end{claim}
|
|
\begin{subproof}
|
|
Suppose that
|
|
$e^{-\i t x_n} \phi(t) \xrightarrow{n \to \infty} e^{-\i t x} \phi(t)$
|
|
for all $t$.
|
|
Since
|
|
\[
|
|
|e^{-\i t x} \phi(t)| \le |\phi(t)|
|
|
\]
|
|
and $\phi \in L^1$,
|
|
we get $f(x_n) \to f(x)$
|
|
by the dominated convergence theorem.
|
|
\end{subproof}
|
|
|
|
We'll show that for all $a < b$ we have
|
|
\[
|
|
\bP\left( (a,b] \right) = \int_a^b f(x) \dif x.\label{thm10_3eq1}
|
|
\]
|
|
Let $F$ be the distribution function of $\bP$.
|
|
It is enough to prove \autoref{thm10_3eq1}
|
|
for all continuity points $a $ and $ b$ of $F$.
|
|
We have
|
|
\begin{IEEEeqnarray*}{rCl}
|
|
RHS &\overset{\text{Fubini}}{=}& \frac{1}{2 \pi} \int_{\R} \int_{a}^b e^{-\i t x} \phi(t) \dif x \dif t\\
|
|
&=& \frac{1}{2 \pi} \int_\R \phi(t) \int_a^b e^{-\i t x} \dif x \dif t\\
|
|
&=& \frac{1}{2\pi} \int_{\R} \phi(t) \left( \frac{e^{-\i t b} - e^{-\i t a}}{- \i t} \right) \dif t\\
|
|
&\overset{\text{dominated convergence}}{=}& \lim_{T \to \infty} \frac{1}{2\pi} \int_{-T}^{T} \phi(t) \left( \frac{e^{-\i t b} - e^{- \i t a}}{- \i t} \right) \dif t
|
|
\end{IEEEeqnarray*}
|
|
By \autoref{inversionformula}, the RHS is equal to $F(b) - F(a) = \bP\left( (a,b] \right)$.
|
|
\end{refproof}
|
|
|
|
However, Fourier analysis is not only useful for continuous probability density functions:
|
|
|
|
\begin{theorem}[Bochner's formula for the mass at a point]\label{bochnersformula} % Theorem 4
|
|
Let $\bP \in M_1(\lambda)$.
|
|
Then
|
|
\[
|
|
\forall x \in \R ~ \bP\left( \{x\} \right) = \lim_{T \to \infty} \frac{1}{2 T} \int_{-T}^T e^{-\i t x } \phi(t) \dif t.
|
|
\]
|
|
|
|
\end{theorem}
|
|
\begin{refproof}{bochnersformula}
|
|
We have
|
|
\begin{IEEEeqnarray*}{rCl}
|
|
RHS &=& \lim_{T \to \infty} \frac{1}{2 T} \int_{-T}^T e^{-\i t x} \int_{\R} e^{\i t y} \bP(\dif y) \\
|
|
&\overset{\text{Fubini}}{=}&
|
|
\lim_{T \to \infty} \frac{1}{2 T} \int_\R \int_{-T}^T
|
|
e^{-\i t (y - x)} \dif t \bP(\dif y)\\
|
|
&=& \lim_{T \to \infty} \frac{1}{2 T} \int_\R \int_{-T}^T
|
|
\cos(t(y-x)) + \underbrace{\i \sin(t (y-x))}_{\text{odd}}
|
|
\dif t \bP(\dif y)\\
|
|
&=& \lim_{T \to \infty} \frac{1}{2T}\int_{\R}
|
|
\int_{-T}^T \cos(t(y - x)) \dif t \bP(\dif y)\\
|
|
&=& \lim_{T \to \infty} \frac{1}{2T}\int_{\R}
|
|
2T \sinc(T(y-x))
|
|
\footnote{$\sinc(x) = \begin{cases}
|
|
\frac{\sin(x)}{x} &\text{if } x \neq 0,\\
|
|
1 &\text{otherwise.}
|
|
\end{cases}$} \bP(\dif y)\\
|
|
&\overset{\text{DCT}}{=}& \int_{\R}\lim_{T \to \infty}
|
|
\sinc(T(y-x)) \bP(\dif y)\\
|
|
&=& \bP(\{x\}).
|
|
\end{IEEEeqnarray*}
|
|
\end{refproof}
|
|
|
|
\begin{theorem} % Theorem 5
|
|
\label{thm:lec_10thm5}
|
|
Let $\phi$ be the characteristic function of $\bP \in M_1(\lambda)$.
|
|
Then
|
|
\begin{enumerate}[(a)]
|
|
\item $\phi(0) = 1$, $|\phi(t)| \le 1$ and $\phi(\cdot )$ is continuous.
|
|
\item $\phi$ is a \vocab{positive definite function},
|
|
i.e.~
|
|
\[\forall t_1,\ldots, t_n \in \R, (c_1,\ldots,c_n) \in \C^n ~ \sum_{j,k = 1}^n c_j \overline{c_k} \phi(t_j - t_k) \ge 0
|
|
\]
|
|
Equivalently, the matrix $(\phi(t_j- t_k))_{j,k}$ is positive definite.
|
|
\end{enumerate}
|
|
\end{theorem}
|
|
\begin{refproof}{thm:lec_10thm5}
|
|
Part (a) is obvious.
|
|
|
|
For part (b) we have:
|
|
\begin{IEEEeqnarray*}{rCl}
|
|
\sum_{j,k} c_j \overline{c_k} \phi(t_j - t_k) &=& \sum_{j,k} c_j \overline{c_k} \int_\R e^{\i (t_j - t_k) x} \bP(\dif x)\\
|
|
&=& \int_{\R} \sum_{j,k} c_j \overline{c_k} e^{\i t_j x} \overline{e^{\i t_k x}} \bP(\dif x)\\
|
|
&=& \int_{\R}\sum_{j,k} c_j e^{\i t_j x} \overline{c_k e^{\i t_k x}} \bP(\dif x)\\
|
|
&=& \int_{\R} \left| \sum_{l} c_l e^{\i t_l x}\right|^2 \ge 0
|
|
\end{IEEEeqnarray*}
|
|
\end{refproof}
|
|
\begin{theorem}[Bochner's theorem]\label{bochnersthm}
|
|
The converse to \autoref{thm:lec_10thm5} holds, i.e.~ any
|
|
$\phi: \R \to \C$ satisfying (a) and (b) of \autoref{thm:lec_10thm5}
|
|
must be the Fourier transform of a probability measure $\bP$
|
|
on $(\R, \cB(\R))$.
|
|
\end{theorem}
|
|
Unfortunately, we won't prove \autoref{bochnersthm} in this lecture.
|
|
|
|
|
|
\begin{definition}[Convergence in distribution / weak convergence]
|
|
\label{def:weakconvergence}
|
|
We say that $\bP_n \subseteq M_1(\R)$ \vocab[Convergence!weak]{converges weakly} towards $\bP \in M_1(\R)$ (notation: $\bP_n \implies \bP$), iff
|
|
\[
|
|
\forall f \in C_b(\R)~ \int f \dif\bP_n \to \int f \dif\bP.
|
|
\]
|
|
Where
|
|
\[
|
|
C_b(\R) \coloneqq \{ f: \R \to \R \text{ continuous and bounded}\}
|
|
\]
|
|
|
|
In analysis, this is also known as $\text{weak}^\ast$ convergence.
|
|
\end{definition}
|
|
\begin{remark}
|
|
This notion of convergence makes $M_1(\R)$ a separable metric space.
|
|
We can construct a metric on $M_1(\R)$ that turns $M_1(\R)$ into a complete
|
|
and separable metric space:
|
|
|
|
Consider the sets
|
|
\[
|
|
\{\bP \in M_1(\R): \forall i=1,\ldots,n ~ \int f \dif\bP - \int f_i \dif\bP < \epsilon \}
|
|
\]
|
|
for any $f,f_1,\ldots, f_n \in C_b(\R)$.
|
|
These sets form a basis for the topology on $M_1(\R)$.
|
|
More of this will follow later.
|
|
\end{remark}
|
|
\begin{example}
|
|
\begin{itemize}
|
|
\item Let $\bP_n = \delta_{\frac{1}{n}}$.
|
|
Then $\int f \dif\bP_n = f(\frac{1}{n}) \to f(0) = \int f d \delta_0$
|
|
for any continuous, bounded function $f$.
|
|
Hence $\bP_n \to \delta_0$.
|
|
\item $\bP_n \coloneqq \delta_n$ does not converge weakly,
|
|
as for example
|
|
\[
|
|
\int \cos(\pi x) \dif\bP_n(x)
|
|
\]
|
|
does not converge.
|
|
|
|
\item $\bP_n \coloneqq \frac{1}{n} \delta_n + (1- \frac{1}{n}) \delta_0$.
|
|
Let $f \in C_b(\R)$ arbitrary.
|
|
Then
|
|
\[
|
|
\int f \dif\bP_n = \frac{1}{n}(n) + (1 - \frac{1}{n}) f(0) \to f(0)
|
|
\]
|
|
since $f$ is bounded.
|
|
Hence $\bP_n \implies \delta_0$.
|
|
\item $\bP_n \coloneqq \frac{1}{\sqrt{2 \pi n}} e^{-\frac{x^2}{2n}}$.
|
|
This ``converges'' towards the $0$-measure,
|
|
which is not a probability measure.
|
|
Hence $\bP_n$ does not converge weakly.
|
|
(Exercise) % TODO
|
|
\end{itemize}
|
|
\end{example}
|
|
\begin{definition}
|
|
We say that a series of random variables $X_n$
|
|
\vocab[Convergence!in distribution]{converges in distribution}
|
|
to $X$ (notation: $X_n \xrightarrow{\text{dist}} X$), iff
|
|
$\bP_n \implies \bP$, where $\bP_n$ is the distribution of $X_n$
|
|
and $\bP$ is the distribution of $X$.
|
|
\end{definition}
|
|
\begin{example}
|
|
Let $X_n \coloneqq \frac{1}{n}$
|
|
and $F_n$ the distribution function, i.e.~$F_n = \One_{[\frac{1}{n},\infty)}$.
|
|
Then $\bP_n = \delta_{\frac{1}{n}} \implies \delta_0$
|
|
which is the distribution of $X \equiv 0$.
|
|
But $F_n(0) \centernot\to F(0)$.
|
|
\end{example}
|
|
\begin{theorem} % Theorem 1
|
|
\label{lec10_thm1}
|
|
$X_n \xrightarrow{\text{dist}} X$ iff
|
|
$F_n(t) \to F(t)$ for all continuity points $t$ of $F$.
|
|
\end{theorem}
|
|
\begin{theorem}[Levy's continuity theorem]\label{levycontinuity}
|
|
% Theorem 2
|
|
$X_n \xrightarrow{\text{dist}} X$ iff
|
|
$\phi_{X_n}(t) \to \phi(t)$ for all $t \in \R$.
|
|
\end{theorem}
|
|
We will assume these two theorems for now and derive the central limit theorem.
|
|
The theorems will be proved later.
|