173 lines
5.6 KiB
TeX
173 lines
5.6 KiB
TeX
\lecture{14}{2023-05-25}{Conditional expectation}
|
|
|
|
\section{Conditional Expectation}
|
|
|
|
\subsection{Introduction}
|
|
|
|
Consider a probability space $(\Omega, \cF, \bP)$
|
|
and two events $A, B \in \cF$ with $\bP(B) > 0$.
|
|
|
|
\begin{definition}
|
|
The \vocab{conditional probability} of $A$ given $B$ is defined as
|
|
\[
|
|
\bP(A | B) \coloneqq \frac{\bP(A \cap B)}{\bP(B)}.
|
|
\]
|
|
\end{definition}
|
|
|
|
Suppose we have two random variables $X$ and $Y$ on $\Omega$,
|
|
such that $X$ takes distinct values $x_1, x_2,\ldots, x_{m}$
|
|
and $Y$ takes distinct values $y_1,\ldots, y_n$.
|
|
Then for this case, define the \vocab{conditional expectation}
|
|
of $X$ given $Y = y_j$ as
|
|
\[
|
|
\bE[X | Y = y_j] \coloneqq \sum_{i=1}^m x_i \bP[X=x_i | Y = y_j].
|
|
\]
|
|
|
|
The random variable $Z = \bE[X | Y]$
|
|
is defined as follows:
|
|
If $Y(\omega) = y_j$ then
|
|
\[
|
|
Z(\omega) \coloneqq \underbrace{\bE[X | Y = y_j]}_{\text{\reflectbox{$\coloneqq$}} z_j}.
|
|
\]
|
|
Note that $\Omega_j \coloneqq \{\omega : Y(\omega) = y_j\}$
|
|
defines a partition of $\Omega$ and on each $\Omega_j$
|
|
(``the $j^{\text{th}}$ $Y$-atom'')
|
|
$ Z$ is constant.
|
|
|
|
|
|
Let $\cG \coloneqq \sigma(Y)$.
|
|
Then $Z$ is measurable with respect to $\cG$.
|
|
Furthermore
|
|
\begin{IEEEeqnarray*}{rCl}
|
|
\int_{\{Y = y_j\} } Z \dif \bP &=& z_j \int_{\{Y = y_j\}} \dif \bP\\
|
|
&=& z_j \bP[Y=y_j]\\
|
|
&=&\sum_{i=1}^m x_i \bP[X = x_i | Y = y_j] \bP[Y = y_j]\\
|
|
&=&\sum_{i=1}^m x_i \bP[X = x_i, Y = y_j]\\
|
|
&=& \int_{\{Y = y_j\}} X \dif \bP.
|
|
\end{IEEEeqnarray*}
|
|
Hence
|
|
\[
|
|
\int_{G} Z \dif \bP = \int_{G} X \dif \bP
|
|
\]
|
|
for all $G \in \cG$.
|
|
|
|
We now want to generalize this to arbitrary random variables.
|
|
\begin{theorem}
|
|
\label{conditionalexpectation}
|
|
Let $(\Omega, \cF, \bP)$ be a probability space, $X \in L^1(\bP)$
|
|
and $\cG \subseteq \cF$ a sub-$\sigma$-algebra.
|
|
Then there exists a random variable $Z$
|
|
such that
|
|
\begin{enumerate}[(a)]
|
|
\item $Z$ is $\cG$-measurable and $Z \in L^1(\bP)$,
|
|
\item $\int_G Z \dif \bP = \int_G X \dif \bP$
|
|
for all $G \in \cG$.
|
|
\end{enumerate}
|
|
|
|
Such a $Z$ is unique up to sets of measure $0$ and is
|
|
called the \vocab{conditional expectation} of $X$ given
|
|
the $\sigma$-algebra $\cG$ and written
|
|
$Z = \bE[X | \cG]$.
|
|
\end{theorem}
|
|
\begin{remark}
|
|
Suppose $\cG = \{\emptyset, \Omega\}$,
|
|
then
|
|
\[
|
|
\bE[X | \cG] = (\omega \mapsto \bE[X])
|
|
\]
|
|
is a constant random variable.
|
|
\end{remark}
|
|
|
|
\begin{definition}[Conditional probability]
|
|
Let $A \subseteq \Omega$ be an event and $\cG \subseteq \cF$
|
|
a sub-$\sigma$-algebra.
|
|
We define the \vocab{conditional probability} of $A$ given $\cG$ by
|
|
\[
|
|
\bP[A | \cG] \coloneqq \bE[\One_A | \cG].
|
|
\]
|
|
\end{definition}
|
|
|
|
\subsection{Existence of Conditional Probability}
|
|
|
|
We will give two different proves of \yaref{conditionalexpectation}.
|
|
The first one will use orthogonal projections.
|
|
The second will use the Radon-Nikodym theorem.
|
|
We'll first do the easy proof, derive some properties
|
|
and then do the harder proof.
|
|
|
|
\begin{lemma}
|
|
\label{orthproj}
|
|
Suppose $H$ is a \vocab{Hilbert space},
|
|
i.e.~$H$ is a vector space with an inner product $\langle \cdot, \cdot \rangle_H$ which defines a norm by $\|x\|_H^2 = \langle x, x\rangle_H$
|
|
making $H$ a complete metric space.
|
|
|
|
For any $x \in H$ and closed, convex subspace $K \subseteq H$,
|
|
there exists a unique $z \in K$ such that the following equivalent conditions hold:
|
|
\begin{enumerate}[(a)]
|
|
\item $\forall y \in K : \langle x-z, y\rangle_H = 0$,
|
|
\item $\forall y \in K: \|z-x\|_H \le \|z-x\|_H$.
|
|
\end{enumerate}
|
|
\end{lemma}
|
|
\begin{proof}
|
|
\notes
|
|
\end{proof}
|
|
|
|
\begin{refproof}{conditionalexpectation}
|
|
|
|
Almost sure uniqueness of $Z$:
|
|
|
|
Suppose $X \in L^1$ and $Z$ and $Z'$ satisfy (a) and (b).
|
|
We need to show that $\bP[Z \neq Z'] = 0$.
|
|
By (a), we have $Z, Z' \in L^1(\Omega, \cG, \bP)$.
|
|
By (b), $\bE[(Z - Z') \One_G] = 0$ for all $G \in \cG$.
|
|
|
|
Assume that $\bP[Z > Z'] > 0$.
|
|
Since $\{Z > Z' + \frac{1}{n}\} \uparrow \{Z > Z'\}$,
|
|
we see that $\bP[Z > Z' + \frac{1}{n}] > 0$ for some $n$.
|
|
However $\{Z > Z' + \frac{1}{n}\} \in \cG$,
|
|
which is a contradiction, since
|
|
\[
|
|
\bE[(Z - Z') \One_{Z - Z' > \frac{1}{n}}] \ge \frac{1}{n} \bP[ Z - Z' > \frac{1}{n}] > 0.
|
|
\]
|
|
|
|
|
|
\bigskip
|
|
Existence of $\bE(X | \cG)$ for $X \in L^2$:
|
|
|
|
Let $H = L^2(\Omega, \cF, \bP)$
|
|
and $K = L^2(\Omega, \cG, \bP)$.
|
|
|
|
$K$ is closed, since a pointwise limit of $\cG$-measurable
|
|
functions is $\cG$ measurable (if it exists).
|
|
By \yaref{orthproj},
|
|
there exists $z \in K$ such that
|
|
\[\bE[(X - Z)^2] = \inf \{ \bE[(X- W)^2] ~|~ W \in L^2(\cG)\}\]
|
|
and
|
|
\begin{equation}
|
|
\forall Y \in L^2(\cG) : \langle X - Z, Y\rangle = 0.
|
|
\label{lec13_boxcond}
|
|
\end{equation}
|
|
Now, if $G \in \cG$, then $Y \coloneqq \One_G \in L^2(\cG)$
|
|
and by \eqref{lec13_boxcond} $\bE[Z \One_G] = \bE[X \One_G]$.
|
|
|
|
|
|
\bigskip
|
|
Existence of $\bE(X | \cG)$ for $X \in L^1$ :
|
|
|
|
Let $X = X^+ - X^-$.
|
|
It suffices to show (a) and (b) for $X^+$.
|
|
Choose bounded random variables $X_n \ge 0$ such that $X_n \uparrow X$.
|
|
Since each $X_n \in L^2$, we can choose a version $Z_n$ of $\bE(X_n | \cG)$.
|
|
|
|
\begin{claim}
|
|
$0 \overset{\text{a.s.}}{\le} Z_n \uparrow$.
|
|
\end{claim}
|
|
\begin{subproof}
|
|
\notes
|
|
\end{subproof}
|
|
|
|
Define $Z(\omega) \coloneqq \limsup_{n \to \infty} Z_n(\omega)$.
|
|
Then $Z$ is $\cG$-measurable and since $Z_n \uparrow Z$,
|
|
by the \yaref{cmct},
|
|
$\bE(Z \One_G) = \bE(X \One_G)$ for all $G \in \cG$.
|
|
\end{refproof}
|