267 lines
7.9 KiB
TeX
267 lines
7.9 KiB
TeX
\lecture{15}{2023-06-06}{}
|
|
\subsection{Properties of Conditional Expectation}
|
|
|
|
We want to derive some properties of conditional expectation.
|
|
|
|
\begin{theorem}[Law of total expectation]
|
|
\label{ceprop1}
|
|
\label{totalexpectation}
|
|
\[
|
|
\bE[\bE[X | \cG ]] = \bE[X].
|
|
\]
|
|
\end{theorem}
|
|
\begin{proof}
|
|
Apply (b) from the definition for $G = \Omega \in \cG$.
|
|
\end{proof}
|
|
\begin{theorem}
|
|
\label{ceprop2}
|
|
If $X$ is $\cG$-measurable, then $X \overset{\text{a.s.}}{=}\bE[X | \cG]$.
|
|
\end{theorem}
|
|
\begin{proof}
|
|
Suppose $\bP[X \neq Y] > 0$.
|
|
Without loss of generality $\bP[X > Y] > 0$.
|
|
Hence $\bP[ X > Y + \frac{1}{n}]> 0$ for some $n \in \N$.
|
|
Let $A \coloneqq \{X > Y + \frac{1}{n}\}$.
|
|
Then
|
|
\[
|
|
\int_A X \dif \bP \ge \frac{1}{n}\bP(A) + \int_A Y \dif \bP,
|
|
\]
|
|
contradicting property (b) from \autoref{conditionalexpectation}.
|
|
\end{proof}
|
|
|
|
\begin{example}
|
|
Suppose $X \in L^1(\bP)$, $\cG \coloneqq \sigma(X)$.
|
|
Then $X$ is measurable with respect to $\cG$.
|
|
Hence $\bE[X | \cG] = X$.
|
|
\end{example}
|
|
|
|
\begin{theorem}[Linearity]
|
|
\label{ceprop3}
|
|
\label{celinearity}
|
|
For all $a,b \in \R$
|
|
we have
|
|
\[
|
|
\bE[a X_1 + bX_2 | \cG] = a \bE[X_1 | \cG] + b \bE[X_2|\cG].
|
|
\]
|
|
\end{theorem}
|
|
\begin{proof}
|
|
trivial\todo{add details}
|
|
\end{proof}
|
|
|
|
\begin{theorem}[Positivity]
|
|
\label{ceprop4}
|
|
\label{cpositivity}
|
|
If $X \ge 0$, then $\bE[X | \cG] \ge 0$ a.s.
|
|
\end{theorem}
|
|
\begin{proof}
|
|
Let $W $ be a version of $\bE[X | \cG]$.
|
|
Suppose $\bP[ W < 0] > 0$.
|
|
Then \[G \coloneqq \{W < -\frac{1}{n}\} \in \cG.\]
|
|
For some $n \in \N$, we have $\bP[G] > 0$.
|
|
However it follows that
|
|
\[
|
|
\int_G \bP[X | \cG] \dif \bP \le -\frac{1}{n} \bP[G] < 0 \le \int_G X \dif \bP.
|
|
\]
|
|
\end{proof}
|
|
\begin{theorem}[Conditional monotone convergence theorem]
|
|
\label{ceprop5}
|
|
\label{mcmt}
|
|
Let $X_n,X \in L^1(\Omega, \cF, \bP)$.
|
|
Suppose $X_n \ge 0$ with $X_n \uparrow X$.
|
|
Then $\bE[X_n|\cG] \uparrow \bE[X|\cG]$.
|
|
\end{theorem}
|
|
\begin{proof}
|
|
Let $Z_n$ be a version of $\bE[X_n | Y]$.
|
|
Since $X_n \ge 0$ and $X_n \uparrow$,
|
|
by \autoref{cpositivity},
|
|
we have
|
|
\[
|
|
\bE[X_n | \cG] \overset{\text{a.s.}}{\ge } 0
|
|
\]
|
|
and
|
|
\[
|
|
\bE[X_n | \cG] \uparrow \text{a.s.}
|
|
\]
|
|
(consider $X_{n+1} - X_n$ ).
|
|
|
|
Define $Z \coloneqq \limsup_{n \to \infty} Z_n$.
|
|
Then $Z$ is $\cG$-measurable
|
|
and $Z_n \uparrow Z$ a.s.
|
|
|
|
Take some $G \in \cG$.
|
|
We know by (b) % TODO REF
|
|
that $\bE[Z_n \One_G] = \bE[X_n \One_G]$.
|
|
The LHS increases to $\bE[Z \One_G]$ by the monotone
|
|
convergence theorem.
|
|
Again by MCT, $\bE[X_n \One_G]$ increases to
|
|
$\bE[X \One_G]$.
|
|
Hence $Z$ is a version of $\bE[X | \cG]$.
|
|
\end{proof}
|
|
|
|
\begin{theorem}[Conditional Fatou]
|
|
\label{ceprop6}
|
|
\label{cfatou}
|
|
Let $X_n \in L^1(\Omega, \cF, \bP)$, $X_n \ge 0$.
|
|
Then
|
|
\[
|
|
\bE[ \liminf_{n \to \infty} X_n | \cG] \le \liminf_{n \to \infty} \bE[X_n | \cG].
|
|
\]
|
|
\end{theorem}
|
|
\begin{proof}
|
|
\notes
|
|
\end{proof}
|
|
\begin{theorem}[Conditional dominated convergence theorem]
|
|
\label{ceprop7}
|
|
\label{cdct}
|
|
Let $X_n,X \in L^1(\Omega, \cF, \bP)$.
|
|
Suppose $|X_n(\omega)| < X(\omega)$ a.e.~
|
|
and $\int |X| \dif \bP < \infty$.
|
|
Then $X_n(\omega) \to X\left( \omega \right) \implies \bE[ X_n | \cG] \to \bE[X | \cG]$.
|
|
|
|
\end{theorem}
|
|
\begin{proof}
|
|
\notes
|
|
\end{proof}
|
|
|
|
Recall
|
|
\begin{fact}[Jensen's inequality]
|
|
If $c : \R \to \R$ is convex and $\bE[|c \circ X|] < \infty$,
|
|
then $\bE[c \circ X] \overset{\text{a.s.}}{\ge} c(\bE[X])$.
|
|
\end{fact}
|
|
|
|
For conditional expectation, we have
|
|
\begin{theorem}[Conditional Jensen's inequality]
|
|
\label{ceprop8}
|
|
\label{cjensen}
|
|
Let $X \in L^1(\Omega, \cF, \bP)$.
|
|
If $c : \R \to \R$ is convex and $\bE[|c \circ X|] < \infty$,
|
|
then $\bE[c \circ X | \cG] \ge c(\bE[X | \cG])$ a.s.
|
|
\end{theorem}
|
|
\begin{fact}
|
|
\label{convapprox}
|
|
If $c$ is convex, then there are two sequences of real numbers
|
|
$a_n, b_n \in \R$
|
|
such that
|
|
\[
|
|
c(x) = \sup_n(a_n x + b_n).
|
|
\]
|
|
\end{fact}
|
|
\begin{refproof}{cjensen}
|
|
By \autoref{convapprox}, $c(x) \ge a_n X + b_n$
|
|
for all $n$.
|
|
Hence
|
|
\[
|
|
\bE[c(X) | \cG] \ge a_n \bE[X | \cG] + \bE[b_n | \cG]
|
|
= a_n \bE[X | \cG] + b_n \text{ a.s.}
|
|
\]
|
|
for all $n$.
|
|
Using that a countable union of sets o f measure zero has measure zero,
|
|
we conclude that a.s~this happens simultaneously for all $n$.
|
|
Hence
|
|
\[
|
|
\bE[c(X) | \cG] \ge \sup_n (a_n \bE[X | \cG] + b_n) \overset{\text{\autoref{convapprox}}}{=} c(\bE(X | \cG)).
|
|
\]
|
|
\end{refproof}
|
|
|
|
Recall
|
|
\begin{fact}[Hölder's inequality]
|
|
Let $p,q \ge 1$ such that $\frac{1}{p} + \frac{1}{q} = 1$.
|
|
Suppose $X \in L^p(\bP)$ and $Y \in L^q(\bP)$.
|
|
Then
|
|
\[
|
|
\bE(X Y) \le \underbrace{\bE(|X|^p)^{\frac{1}{p}}}_{\text{\reflectbox{$\coloneqq$}} \|X\|_{L^p}} \bE(|Y|^q)^{\frac{1}{q}}.
|
|
\]
|
|
\end{fact}
|
|
|
|
\begin{theorem}[Conditional Hölder's inequality]
|
|
\label{ceprop9}
|
|
\label{choelder}
|
|
Let $p,q \ge 1$ such that $\frac{1}{p} + \frac{1}{q} = 1$.
|
|
Suppose $X \in L^p(\bP)$ and $Y \in L^q(\bP)$.
|
|
Then
|
|
\[
|
|
\bE(X Y | \cG) \le \bE(|X|^p | \cG)^{\frac{1}{p}} \bE(|Y|^q | \cG)^{\frac{1}{q}}.
|
|
\]
|
|
\end{theorem}
|
|
\begin{proof}
|
|
\todo{Exercise}
|
|
\end{proof}
|
|
|
|
\begin{theorem}[Tower property]
|
|
\label{ceprop10}
|
|
\label{cetower}
|
|
Suppose $\cF \supset \cG \supset \cH$ are sub-$\sigma$-algebras.
|
|
Then
|
|
\[
|
|
\bE\left[\bE[X | \cG] \mid \cH\right] \overset{\text{a.s.}}{=} \bE[X | \cH].
|
|
\]
|
|
\end{theorem}
|
|
\begin{proof}
|
|
By definition, $\bE[\bE[X | \cG] | \cH]$ is $\cH$-measurable.
|
|
For any $H \in \cH$, we have
|
|
\begin{IEEEeqnarray*}{rCl}
|
|
\int_H \bE[\bE[X | \cG] | \cH] \dif \bP
|
|
&=& \int_{H} \bE[X | \cG] \dif \bP\\
|
|
&=& \int_H X \dif \bP.
|
|
\end{IEEEeqnarray*}
|
|
Hence $\bE[\bE[X | \cG] | \cH] \overset{\text{a.s.}}{=} \bE[X | \cH]$.
|
|
\end{proof}
|
|
|
|
\begin{theorem}[Taking out what is known]
|
|
\label{ceprop11}
|
|
\label{takingoutwhatisknown}
|
|
|
|
If $Y$ is $\cG$-measurable and bounded, then
|
|
\[
|
|
\bE[YX| \cG] \overset{\text{a.s.}}{=} Y \bE[X | \cG].
|
|
\]
|
|
\end{theorem}
|
|
\begin{proof}
|
|
Assume w.l.o.g.~$X \ge 0$.
|
|
Assume $Y = \One_B$, then $Y$ simple, then take the limit (using that $Y$ is bounded).
|
|
\todo{Exercise}
|
|
\end{proof}
|
|
|
|
\begin{definition}
|
|
Let $\cG$ and $\cH$ be $\sigma$-algebras.
|
|
We call $\cG$ and $\cH$ \vocab[$\sigma$-algebra!independent]{independent},
|
|
if $\bP(G \cap H) = \bP(G) \bP(H)$
|
|
for all events $G \in \cG$, $H \in \cH$.
|
|
\end{definition}
|
|
|
|
\begin{theorem}[Role of independence]
|
|
\label{ceprop12}
|
|
\label{ceroleofindependence}
|
|
Let $X$ be a random variable,
|
|
and let $\cG, \cH$ be $\sigma$-algebras.
|
|
|
|
If $\cH$ is independent of $\sigma\left( \sigma(X), \cG \right)$,
|
|
then
|
|
\[
|
|
\bE[X | \sigma(\cG, \cH)] \overset{\text{a.s.}}{=} \bE[X | \cG].
|
|
\]
|
|
|
|
In particular, if $X$ is independent of $\cG$,
|
|
then
|
|
\[
|
|
\bE[X | \cG] \overset{\text{a.s.}}{=} \bE[X].
|
|
\]
|
|
\end{theorem}
|
|
|
|
\begin{example}[Martingale property of the simple random walk]
|
|
Suppose $X_1,X_2,\ldots$ are i.i.d.~with $\bP[X_i = 1] = \bP[X_i = -1] = \frac{1}{2}$.
|
|
Let $S_n \coloneqq \sum_{i=1}^n X_i$ be the \vocab{simple random walk}.
|
|
Let $\cF$ denote the $\sigma$-algebra on the product space.
|
|
Define $\cF_n \coloneqq \sigma(X_1,\ldots)$.
|
|
Intuitively, $\cF_n$ contains all the information gathered until time $n$.
|
|
We have $\cF_1 \subset \cF_2 \subset \cF_3 \subset \ldots$
|
|
|
|
For $\bE[S_{n+1} | \cF_n]$ we obtain
|
|
\begin{IEEEeqnarray*}{rCl}
|
|
\bE[S_{n+1} | \cF_n] &\overset{\text{\autoref{celinearity}}}{=}&
|
|
\bE[S_n | \cF_n] + \bE[X_{n+1} | \cF_n]\\
|
|
&\overset{\text{a.s.}}{=}& S_n + \bE[X_{n+1} | \cF_n]\\
|
|
&\overset{\text{\autoref{ceprop12}}}{=}& S_{n} + \bE[X_n]\\
|
|
&=& S_n.
|
|
\end{IEEEeqnarray*}
|
|
\end{example}
|