s23-probability-theory/inputs/lecture_3.tex
2023-05-10 18:56:36 +02:00

125 lines
5.6 KiB
TeX

\todo{Lecture 3 needs to be finished}
\begin{notation}
Let $\cB_n$ denote $\cB(\R^n)$.
\end{notation}
\begin{goal}
Suppose we have a probability measure $\mu_n$ on $(\R^n, \cB(\R^n))$
for each $n$.
We want to show that there exists a unique probability measure $\bP^{\otimes}$
on $(\R^\infty, \cB_\infty)$ (where $\cB_{\infty}$ still needs to be defined),
such that $\bP^{\otimes}\left( \prod_{n \in \N} B_n \right) = \prod_{n \in \N} \mu_n(B_n)$
for all $\{B_n\}_{n \in \N}$, $B_n \in \cB_1$.
\end{goal}
% $\bP_n = \mu_1 \otimes \ldots \otimes \mu_n$.
\begin{remark}
$\prod_{n \in \N} \mu_n(B_n)$ converges, since $0 \le \mu_n(B_n) \le 1$
for all $n$.
\end{remark}
First we need to define $\cB_{\infty}$.
This $\sigma$-algebra must contain all sets $\prod_{n \in \N} B_n$
for all $B_n \in \cB_1$. We simply define $\cB_{\infty}$ to be the
$\sigma$-algebra
Let \[\cB_\infty \coloneqq \sigma \left( \left\{\prod_{n \in \N} B_n : B_n \in \cB(\R)\right\} \right).\]
\begin{question}
What is there in $\cB_\infty$?
Can we identify sets in $\cB_\infty$ for which we can define the product measure
easily?
\end{question}
Let $\cF_n \coloneqq \{ C \times \R^{\infty} | C \in \cB_n\}$.
It is easy to see that $\cF_n \subseteq \cF_{n+1}$
and using that $\cB_n$ is a $\sigma$-algebra, we can show that $\cF_n$
is also a $\sigma$-algebra.
Now, for any $C \subseteq \R^n$ let $C^\ast \coloneqq C \times \R^{\infty}$.
Thus $\cF_n = \{C^\ast : C \in \cB_n\}$.
Define $\lambda_n : \cF_n : \to [0,1]$ by $\lambda_n(C^\ast) \coloneqq (\mu_1 \otimes \ldots \otimes \mu_n)(C)$.
It is easy to see that $\lambda_{n+1} \defon{\cF_n} = \lambda_n$ (\vocab{consistency}).
Recall the following theorem from measure theory:
\begin{theorem}[Caratheodory's extension theorem] % 2.3.3 in the notes
\label{caratheodory}
Suppose $\cA$ is an algebra (i.e.~closed under finite union)
und $\Omega \neq \emptyset$.
Suppose $\bP$ is countably additive on $\cA$ (i.e.~if $(A_n)_{n}$
are pairwise disjoint and $\bigcup_{n \in \N} A_n \subseteq \cA $
then $\bP\left( \bigcup_{n \in \N} A_n \right) = \sum_{n \in \N} \bP(A_n)$).
Then $\bP$ extends uniquely to a probability measure on $(\Omega, \cF)$,
where $\cF = \sigma(\cA)$.
\end{theorem}
Define $\cF = \bigcup_{n \in \N} \cF_n$. Then $\cF$ is an algebra.
We'll show that if we define $\lambda: \cF \to [0,1]$ with
$\lambda(A) = \lambda_n(A)$ for any $n$ where this is well defined,
then $\lambda$ is countably additive on $\cF$.
Using \autoref{caratheodory}, $\lambda$ will extend uniquely to a probability measure on $\sigma(\cF)$.
We want to prove:
\begin{claim}
\label{claim:sF=Binfty}
$\sigma(\cF) = \cB_\infty$.
\end{claim}
\begin{claim}
\label{claim:lambdacountadd}
$\lambda$ as defined above is countably additive on $\cF$.
\end{claim}
\begin{refproof}{claim:sF=Binfty}
Consider an infinite dimensional box $\prod_{n \in \N} B_n$.
We have
\[
\left( \prod_{n=1}^N B_n \right)^\ast \in \cF_n \subseteq \cF
\]
thus
\[
\prod_{n \in \N} B_n = \bigcap_{N \in \N} \left( \prod_{n=1}^N B_n \right)^\ast \in \sigma(\cF).
\]
Since $\sigma(\cF)$ is a $\sigma$-algebra, $\cB_\infty \subseteq \sigma(\cF)$. This proves ``$\supseteq$''.
For the other direction we'll show $\cF_n \subseteq \cB_\infty$ for all $n$.
Let $\cC \coloneqq \{ Q \in \cB_n | Q^\ast \in \cB_\infty\}$.
For $B_1,\ldots,B_n \in \cB$, $B_1 \times \ldots \times B_n \in \cB_n$
and $(B_1 \times \ldots \times B_n)^\ast \in \cB_\infty$.
We have $B_1 \times \ldots \times B_n \in \cC$.
And $\cC$ is a $\sigma$-algebra, because:
\begin{itemize}
\item $\cB_n$ is a $\sigma$-algebra
\item $\cB_\infty$ is a $\sigma$-algebra,
\item $\phi^\ast \phi$, $(\R^n \setminus Q)^\ast = \R^{\infty} \setminus Q^\ast$, $\bigcup_{i \in I} Q_i^\ast = (\bigcup_{i \in I} Q_i)^\ast$.
\end{itemize}
Thus $\cC \subseteq \cB_n$ is a $\sigma$-algebra and contains all rectangles, hence $\cC = \cB_n$.
Hence $\cF_n \subseteq \cB_\infty$ for all $n$,
thus $\cF \subseteq \cB_\infty$. Since $\cB_\infty$ is a $\sigma$-algebra,
$\sigma(\cF) \subseteq \cB_\infty$.
\end{refproof}
We are going to use the following
\begin{fact}
\label{fact:finaddtocountadd}
Suppose $\cA$ is an algebra on $\Omega \neq \emptyset$,
and suppose $\bP: \cA \to [0,1]$ is a finitely additive
probability measure.
Suppose whenever $\{B_n\}_n$ is a sequence of sets from $\cA $
decreasing to $\emptyset$ it is the case that
$\bP(B_n) \to 0$. Then $\bP$ must be countably additive.
\end{fact}
\begin{proof}
Exercise. % TODO
\end{proof}
\begin{refproof}{claim:lambdacountadd}
Let us prove that $\lambda$ is finitely additive.
We have $\lambda(\R^\infty) = \lambda_1(\R^\infty) = 1$ and
$\lambda(\emptyset) = \lambda_1(\emptyset) = 0$.
Suppose that $A_1, A_2 \in \cF$ are disjoint.
Then pick some $n$ such that $A_1, A_2 \in \cF_n$.
Take $C_1, C_2 \in \cB_n$ such that $C_1^\ast = A_1$
and $C_2^\ast = A_2$.
Then $C_1$ and $C_2$ are disjoint and $A_1 \cup A_2 = (C_1 \cup C_2)^\ast$.
$\lambda(A_1 \cup A_2) = \lambda_n(A_1 \cup A_2) = (\mu_1 \otimes \ldots \otimes \mu_n)(C_1 \cup C_2) = \lambda_n(C_1) + \lambda_n(C_2)$
by the definition of the finite product measure.
In order to use \autoref{fact:finaddtocountadd},
we need to show that for any sequence $B_n \in \cF$ with $B_n \xrightarrow{n\to \infty} \emptyset$
we have $\lambda(B_n) \xrightarrow{n \to \infty} 0$.
\todo{Finish this}
%TODO
\end{refproof}