196 lines
6.8 KiB
TeX
196 lines
6.8 KiB
TeX
\lecture{4}{}{End of proof of Kolmogorov's consistency theorem}
|
|
|
|
To finish the proof of \autoref{claim:lambdacountadd},
|
|
we need the following:
|
|
\begin{fact}
|
|
\label{lec4fact1}
|
|
Suppose $\{x_k^{(n)}\}_{n \in \N}$
|
|
is a bounded sequence of real numbers for each $k \in \N$.
|
|
Then there exists a strictly increasing sequence
|
|
of natural number $\{n_i\}_{i\in \N}$
|
|
such that for all $k \in \N$
|
|
the series $\{x_k^{(n_i)}\}_{i \in \N}$
|
|
converges.
|
|
\end{fact}
|
|
\begin{proof}
|
|
We'll use a diagonalization argument.
|
|
For $S \subseteq \N$ infinite,
|
|
we say that a sequence of real number, $(x_n)_{n \in \N}$,
|
|
\vocab[Convergence along a subset]{converges along $S$},
|
|
if
|
|
\[
|
|
\lim_{\substack{n \to \infty\\n \in S}} x_n
|
|
\]
|
|
exists.
|
|
|
|
Let $S_1$ be such that $\{x_1^{(n)}\}_{n \in \N}$
|
|
converges along $S_1$. Such an $S_1$ exists by
|
|
Bolzano-Weierstraß.
|
|
We proceed recursively.
|
|
Suppose we have already chosen $S_1,\ldots, S_{k-1}$.
|
|
Consider $\{x_k^{(n)}\}_{n \in S_{k-1}}$.
|
|
By Bolzano-Weierstraß, there exists $S_k \subseteq S_{k-1}$
|
|
such that $\{x_{k}^{(n)}\}_{n \in S_{k-1}}$
|
|
converges along $S_k$.
|
|
For an infinite subset $T \subseteq \N$ and $\nu \in \N$
|
|
let $\# \nu(T)$ denote the $\nu$-th smallest
|
|
element of $T$.
|
|
Let
|
|
\[
|
|
S \coloneqq \{\#\nu(S_k) : k \in \N\}.
|
|
\]
|
|
Since $S_{k+1} \subseteq S_k$,
|
|
we have $\#(k+1)(S_{k+1}) > \#k(S_{k+1}) \ge \# k (S_k)$.
|
|
Hence $S$ is infinite.
|
|
Each $\{x_k^{(n)}\}_{n \in \N}$
|
|
converges along $S$,
|
|
since all but finitely many elements of $S$
|
|
belong to $S_k$.
|
|
\end{proof}
|
|
|
|
\begin{lemma}
|
|
\label{lem:intersectioncompactsets}
|
|
Let $\{K_n\}_{n \in \N}$ be a sequence of compact sets
|
|
$K_n \subseteq \R^{l_n}$ for some $l_n$.
|
|
Suppose for all $n$
|
|
\[
|
|
\bigcap_{i=1}^n K_i^\ast \neq \emptyset.
|
|
\]
|
|
Then
|
|
\[
|
|
\bigcap_{i\in \N} K_i^\ast \neq \emptyset.
|
|
\]
|
|
|
|
\end{lemma}
|
|
\begin{refproof}{lem:intersectioncompactsets}
|
|
We know from analysis
|
|
that if $\{K_n\}_{n \in \N}$ is a sequence of compact sets
|
|
such that the intersection of finitely many of them is non-empty,
|
|
then
|
|
\[
|
|
\bigcap_{n \in \N} K_n \neq \emptyset.
|
|
\]
|
|
Here, different $K_n$ may have different dimensions $l_n$,
|
|
but we can view them as subsets of $\R^\infty$
|
|
by applying ${}^\ast$.
|
|
For each $n$, choose $x^{(n)} \in \bigcap_{i =1}^n K_i^\ast$.
|
|
We can assume $x ^{(n)}_k = 0$ for $k > \max \{l_1,\ldots, l_n\}$.
|
|
For all $k \in \N$ we will show that $\{x_k^{(n)}\}$
|
|
is bounded.
|
|
\begin{itemize}
|
|
\item Case 1: Suppose every $l_n \le k$.
|
|
Then $\{x_k^{(n)}\}_n$ only contains zeros.
|
|
\item Case 2:
|
|
Suppose some $l_{n_0} \ge k$.
|
|
Let $Z$ be the projection of $K_{n_0} \subseteq \R^{l_{n_0}}$
|
|
onto its $k$-th component.
|
|
$Z$ is a compact subset of $\R$.
|
|
Hence it is bounded.
|
|
For all $n \ge n_0$, we have $x^{(n)} \in K_{n_0}^\ast$
|
|
and $x_k^{(n)} \in Z$,
|
|
so $\{x_k^{(n)}\}_n$ is bounded.
|
|
\end{itemize}
|
|
|
|
By \autoref{lec4fact1},
|
|
there is an infinite set $S \subseteq \N$,
|
|
such that $\{x_k^{(n)}\}_{n \in S}$
|
|
converges for every $k$.
|
|
Let $x_k \coloneqq \lim_{\substack{n \to \infty\\n \in S}} x_k^{(n)}$.
|
|
Now let $x = (x_1,x_2,\ldots)\in \R^{\infty}$.
|
|
\begin{claim}
|
|
$x \in \bigcap_{i \in \N} K_i^\ast$.
|
|
\end{claim}
|
|
\begin{subproof}
|
|
Consider $x^{(n)}$ for $n > i$ and $n \in S$.
|
|
Then $(x^{(n)}_1, \ldots, x^{(n)}_{l_i}) \in K_i$
|
|
and
|
|
\[
|
|
\lim_{\substack{n \to \infty\\n \in S}}
|
|
(x^{(n)}_1, \ldots, x^{(n)}_{l_i})
|
|
= (x_1,\ldots, x_{l_i}).
|
|
\]
|
|
Since $K_i$ is compact,
|
|
it follows that $x \in K_i^\ast$.
|
|
\end{subproof}
|
|
\end{refproof}
|
|
|
|
\begin{refproof}{claim:lambdacountadd}
|
|
In order to apply \autoref{fact:finaddtocountadd},
|
|
we need the following:
|
|
\begin{claim}
|
|
For any sequence $B_n \in \cF$
|
|
with $B_n \xrightarrow{n\to \infty} \emptyset$
|
|
we have $\lambda(B_n) \xrightarrow{n \to \infty} 0$.
|
|
\end{claim}
|
|
\begin{subproof}
|
|
Suppose that $B_1^\ast \supseteq B_2^\ast \supseteq \ldots$
|
|
is a decreasing sequence such that
|
|
$\lim_{n \to \infty} \lambda(B_n^\ast) = \epsilon > 0$.
|
|
For each $n$,
|
|
let $l_n$ be such that $B_n \in \cB_{l_n}$.
|
|
By regularity of Borel probability measures, %
|
|
% TODO see the proof of Caratheodory extension theorem
|
|
given $\epsilon > 0$,
|
|
there exists a compact set $L_n \subseteq B_n$,
|
|
such that
|
|
\[
|
|
(\mu_1 \otimes \ldots \otimes\mu_n)(B_n \setminus L_n)
|
|
< \frac{\epsilon}{2^{n+1}}
|
|
\]
|
|
We have
|
|
\[
|
|
B_n^\ast \setminus \bigcap_{k=1}^n L_k^\ast %
|
|
\subseteq \bigcup_{k=1}^n \left( B_k^\ast \setminus L_k^\ast \right).
|
|
\]
|
|
Hence
|
|
\begin{IEEEeqnarray*}{rCl}
|
|
\lambda\left( B_n^\ast \setminus \bigcap_{k=1}^n L_k^\ast \right)
|
|
&\le & \lambda\left(\bigcup_{k=1}^n %
|
|
B_k^\ast \setminus L_k^\ast \right) \\
|
|
&\le & \sum_{k=1}^{n} \lambda(B_k^\ast \setminus L_k^\ast)\\
|
|
&\le& \sum_{k=1}^{n} \frac{\epsilon}{2^{k+1}}\\
|
|
&\le & \frac{\epsilon}{2}.
|
|
\end{IEEEeqnarray*}
|
|
By our assumption,
|
|
$\lambda(B_n^\ast) \downarrow \epsilon > 0$.
|
|
Hence $\lambda(B_n^\ast) \ge \epsilon$ for all $n$.
|
|
Thus
|
|
\[
|
|
\lambda\left( \bigcap_{k=1}^n L_k^\ast \right) %
|
|
\ge \epsilon - \frac{\epsilon}{2} = \frac{\epsilon}{2}.
|
|
\]
|
|
In particular, for all $n$
|
|
\[
|
|
\bigcap_{k=1}^n L_k^\ast \neq \emptyset.
|
|
\]
|
|
By \autoref{lem:intersectioncompactsets},
|
|
it follows that
|
|
\[
|
|
\bigcap_{k \in \N} L_k^\ast \neq \emptyset.
|
|
\]
|
|
Since
|
|
\[
|
|
\bigcap_{k \in \N} B_k^\ast \supseteq \bigcap_{k \in \N} L_k^\ast,
|
|
\]
|
|
we have $\bigcap_{k \in \N} B_k^\ast \neq \emptyset$.
|
|
\end{subproof}
|
|
\end{refproof}
|
|
|
|
The measure $\lambda$ is as desired:
|
|
For all $n \in \N$ take some $B_n \in \cB_1$
|
|
and let $C_n \coloneqq \prod_{i=1}^n B_i$.
|
|
Then $C_n^\ast \downarrow \prod_{i=1}^{\infty} B_i$,
|
|
hence
|
|
\begin{IEEEeqnarray*}{rCl}
|
|
\lambda\left( \prod_{i=1}^{\infty} B_i \right)
|
|
&\overset{\text{continuity}}{=}& \lim_{N \to \infty} \lambda(C_N^\ast)\\
|
|
&=& \lim_{N \to \infty} \lambda_N(C_N^\ast)\\
|
|
&=& \lim_{N \to \infty} \prod_{n=1}^{N} \mu_n(B_n)\\
|
|
&=& \prod_{n \in \N} \mu_n(B_n).
|
|
\end{IEEEeqnarray*}
|
|
|
|
For the definition of $\lambda$
|
|
as well as the proof of \autoref{claim:lambdacountadd}
|
|
we have only used that $(\lambda_n)_{n \in \N}$
|
|
is a consistent family.
|
|
Hence we have in fact shown \autoref{thm:kolmogorovconsistency}.
|