\lecture{18}{2023-06-20}{} Recall our key lemma \ref{lec17l3} for supermartingales from last time: \[ (b-a) \bE[U_N([a,b])] \le \bE[(X_n - a)^-]. \] What happens for submartingales? If $(X_n)_{n \in \N}$ is a submartingale, then $(-X_n)_{n \in \N}$ is a supermartingale. Hence the same holds for submartingales, i.e. \begin{lemma} A (sub-/super-) martingale bounded in $L^1$ converges a.s.~to a finite limit, which is a.s.~finite. \end{lemma} \subsection{Doob's $L^p$ Inequality} \begin{question} What about $L^p$ convergence of martingales? \end{question} \begin{example}[A martingale not converging in $L^1$ ] Fix $u > 1$ and let $p = \frac{1}{1+u}$. Let $ (Z_n)_{n \ge 1}$ be i.i.d.~$\pm 1$ with $\bP[Z_n = 1] = p$. Let $X_0 = x > 0$ and define $X_{n+1} \coloneqq u^{Z_{n+1}} X_{n}$. Then $(X_n)_n$ is a martingale, since \begin{IEEEeqnarray*}{rCl} \bE[X_{n+1} |\cF_n] &=& X_n \bE[u^{Z_{n+1}}]\\ &=& X_n \left(p \cdot u + (1-p)\cdot\frac{1}{u}\right)\\ &=& X_n \left(\frac{p (u^2-1) + 1}{u}\right)\\ &=& X_n. \end{IEEEeqnarray*} By \autoref{doobmartingaleconvergence}, there exists an a.s.~limit $X_\infty$. By the SLLN, we have almost surely \[ \frac{1}{n} \sum_{k=1}^{n} Z_k \xrightarrow{a.s.} \bE[Z_1] = 2p - 1. \] Hence \[ \left(\frac{X_n}{x}\right)^{\frac{1}{n}} = u^{\frac{1}{n} \sum_{k=1}^n Z_k} \xrightarrow{\text{a.s.}} u^{2p -1}. \] Since $(X_n)_{n \ge 0}$ is a martingale, we have $\bE[u^{Z_1}] = 1$. Hence $2p - 1 < 0$, because $u > 1$. Choose $\epsilon > 0$ small enough such that $u^{2p - 1}(1 + \epsilon) < 1$. Then there exists $N_0(\epsilon)$ (possibly random) such that for all $n > N_0(\epsilon)$ almost \[ \left( \frac{X_n}{x} \right)^{\frac{1}{n}} \overset{\text{a.s.}}{\le} u^{2p - 1}(1 + \epsilon) % \implies x [\underbrace{u^{2p - 1} (1+\epsilon)}_{<1}]^n \xrightarrow[n \to \infty]{\bP} 0. \] However, $X_n$ cannot converge to $0$ in $L^1$, as $\bE[X_n] = \bE[X_0] = x > 0$. \end{example} $L^2$ is nice, since it is a Hilbert space. So we will first consider $L^2$. \begin{fact}[Martingale increments are orthogonal in $L^2$ ] \label{martingaleincrementsorthogonal} Let $(X_n)_n$ be a martingale with $X_n \in L^2$ for all $n$ and let $Y_n \coloneqq X_n - X_{n-1}$ denote the \vocab{martingale increments}. Then for all $m \neq n$ we have that \[ \langle Y_m | Y_n\rangle_{L^2} = \bE[Y_n Y_m] = 0. \] \end{fact} \begin{proof} As $\bE[Y_n^2] = \bE[X_n^2] - 2\bE[X_nX_{n-1}] + \bE[X_{n-1}^2] < \infty$, we have $Y_n \in L^2$. Since $\bE[X_n | \cF_{n-1}] = X_{n-1}$ a.s., by induction $\bE[X_n | \cF_{k}] = X_k$ a.s.~for all $k \le n$. In particular $\bE[Y_n | \cF_k] = 0$ for $k < n$. Suppose that $m < n$. Then \begin{IEEEeqnarray*}{rCl} \bE[Y_n Y_m] &=& \bE[\bE[Y_n Y_m | \cF_m]]\\ &=& \bE[Y_m \bE[Y_n | \cF_m]]\\ &=& 0 \end{IEEEeqnarray*} \end{proof} \begin{fact}[\vocab{Parallelogram identity}] Let $X, Y \in L^2$. Then \[ 2 \bE[X^2] + 2 \bE[Y^2] = \bE[(X+Y)^2] + \bE[(X-Y)^2]. \] \end{fact} \begin{theorem}\label{martingaleconvergencel2} Suppose that $(X_n)_n$ is a martingale bounded in $L^2$,\\ i.e.~$\sup_n \bE[X_n^2] < \infty$. Then there is a random variable $X_\infty$ such that \[ X_n \xrightarrow{L^2} X_\infty. \] \end{theorem} \begin{proof} Let $Y_n \coloneqq X_n - X_{n-1}$ and write \[ X_n = \sum_{j=1}^{n} Y_j. \] We have \[ \bE[X_n^2] = \bE[X_0^2] + \sum_{j=1}^{n} \bE[Y_j^2] \] by \autoref{martingaleincrementsorthogonal}. In particular, \[ \sup_n \bE[X_n^2] < \infty \iff \sum_{j=1}^{\infty} \bE[Y_j^2] < \infty. \] Since $(X_n)_n$ is bounded in $L^2$, there exists $X_\infty$ such that $X_n \xrightarrow{\text{a.s.}} X_\infty$ by \autoref{doob}. It remains to show $X_n \xrightarrow{L^2} X_\infty$. For any $r \in \N$, consider \[\bE[(X_{n+r} - X_n)^2] = \sum_{j=n+1}^{n+r} \bE[Y_j^2] \xrightarrow{n \to \infty} 0\] as a tail of a convergent series. Hence $(X_n)_n$ is Cauchy, thus it converges in $L^2$. Since $\bE[(X_\infty - X_n)^2]$ converges to the increasing limit \[ \sum_{j \ge n + 1} \bE[Y_j^2] \xrightarrow{n\to \infty} 0 \] we get $\bE[(X_\infty - X_n)^2] \xrightarrow{n\to \infty} 0$. \end{proof} Now let $p \ge 1$ be not necessarily $2$. First, we need a very important inequality: \begin{theorem}[Doob's $L^p$ inequality] \label{dooblp} Suppose that $(X_n)_n$ is a martingale or a non-negative submartingale. Let $X_n^\ast \coloneqq \max \{|X_1|, |X_2|, \ldots, |X_n|\}$ denote the \vocab{running maximum}. \begin{enumerate}[(1)] \item Then \[ \forall \ell > 0 .~\bP[X_n^\ast \ge \ell] \le \frac{1}{\ell} \int_{\{X_n^\ast \ge \ell\}} |X_n| \dif \bP \le \frac{1}{\ell} \bE[|X_n|]. \] (Doob's $L^1$ inequality). \item Fix $p > 1$. Then \[ \bE[(X_n^\ast)^p] \le \left( \frac{p}{p-1} \right)^p \bE[|X_n|^p]. \] (Doob's $L^p$ inequality). \end{enumerate} \end{theorem} In order to prove \autoref{dooblp}, we first need \begin{lemma} \label{dooplplemma} Let $p > 1$ and $X,Y$ non-negative random variables such that \[ \forall \ell > 0 .~ \bP[Y \ge \ell] \le \frac{1}{\ell} \int_{\{Y \ge \ell\} } X \dif \bP \] Then \[ \bE[Y^p] \le \left( \frac{p}{p-1} \right)^p \bE[X^p]. \] \end{lemma} \begin{proof} First, assume $Y \in L^p$. Then \begin{IEEEeqnarray}{rCl} \|Y\|_{L^p}^p &=& \bE[Y^p]\\ &=& \int Y(\omega)^p \dif \bP(\omega)\\ &=&\int_{\Omega} \left( \int_0^{Y(\omega)} p \ell^{p-1} \dif \ell \right) \dif \bP(\omega)\\ &\overset{\text{Fubini}}{=}& \int_0^\infty p \ell^{p-1}\underbrace{\int_\Omega \One_{Y \ge \ell}\dif \bP}_% {\bP[Y \ge \ell]} \dif\ell. \label{l18star} \end{IEEEeqnarray} By the assumption it follows that \begin{IEEEeqnarray*}{rCl} \eqref{l18star} &\le& \int_0^\infty p \ell^{p-2} \int_{\{Y(\omega) \ge \ell\}} X(\omega) \bP(\dif \omega)\dif \ell\\ &\overset{\text{Fubini}}{=}& \int_\Omega X(\omega) \int_{0}^{Y(\omega)} p \ell^{p-2} \dif \ell\bP(\dif \omega)\\ &=& \frac{p}{p-1} \int_{\omega} X(\omega) Y (\omega)^{p-1} \bP(\dif \omega)\\ &\overset{\text{Hölder}}{\le}& \frac{p}{p-1} \|X\|_{L^p} \|Y\|_{p}^{p-1}, \end{IEEEeqnarray*} where the assumption was used to apply Hölder. Suppose now $Y \not\in L^p$. Then look at $Y_M = Y \wedge M$. Apply the above to $Y_M \in L^p$ and use the monotone convergence theorem. \end{proof} \begin{refproof}{dooblp} Let $E \coloneqq \{X_n^\ast \ge \ell\} = E_1 \sqcup \ldots \sqcup E_n$ where \[ E_j = \{|X_1| \le \ell, |X_2| \le \ell, \ldots, |X_{j-1}| \le \ell, |X_j| \ge \ell\}. \] Then \begin{equation} \bP[E_j] \overset{\text{Markov}}{\le } \frac{1}{\ell} \int_{E_j} |X_j| \dif \bP \label{lec18eq2star} \end{equation} We have that $(|X_n|)_n$ is a submartingale, by \autoref{cor:convexmartingale} in the case of $X_n$ being a martingale and trivially if $X_n$ is non-negative. Hence \begin{IEEEeqnarray*}{rCl} \bE[\One_{E_j}(|X_n| - |X_{j}|) | \cF_j] &=& \One_{E_j} \bE[(|X_n| - |X_{j}|)|\cF_j]\\ &\overset{\text{a.s.}}{\ge }& 0. \end{IEEEeqnarray*} By the law of total expectation, \autoref{totalexpectation}, it follows that \begin{equation} \bE[\One_{E_j} (|X_n| - |X_j|)] \ge 0. \label{lec18eq3star} \end{equation} Now \begin{IEEEeqnarray*}{rCl} \bP(E) &=& \sum_{j=1}^n \bP(E_j)\\ &\overset{\eqref{lec18eq2star}, \eqref{lec18eq3star}}{\le }& \frac{1}{\ell} \left( \int_{E_1} |X_n| \dif \bP + \ldots + \int_{E_n} |X_n| \dif \bP \right)\\ &=& \frac{1}{\ell} \int_E |X_n| \dif \bP \end{IEEEeqnarray*} This proves the first part. For the second part, we apply the first part and \autoref{dooplplemma} (choose $Y \coloneqq X_n^\ast$). \end{refproof} \todo{Branching process}