% lecture 10 - 2023-05-09 % RECAP First, we will prove some of the most important facts about Fourier transforms. We consider $(\R, \cB(\R))$. \begin{notation} By $M_1 (\R)$ we denote the set of all probability measures on $\left( \R, \cB(\R) \right)$. \end{notation} For all $\bP \in M_1(\R)$ we define $\phi_{\bP}(t) = \int_{\R} e^{\i t x}d\bP(x)$. If $X: (\Omega, \cF) \to (\R, \cB(\R))$ is a random variable, we write $\phi_X(t) \coloneqq \bE[e^{\i t X}] = \phi_{\mu}(t)$, where $\mu = \bP X^{-1}$. \begin{refproof}{inversionformula} We will prove that the limit in the RHS of \autoref{invf} exists and is equal to the LHS. Note that the term on the RHS is integrable, as \[ \lim_{t \to 0} \frac{e^{-\i t b} - e^{-\i t a}}{- \i t} \pi(t) = a - b \] and note that $\phi(0) = 1$ and $|\phi(t)| \le 1$. % TODO think about this We have \begin{IEEEeqnarray*}{rCl} &&\lim_{T \to \infty} \frac{1}{2 \pi} \int_{-T}^T \int_{\R} \frac{e^{-\i t b}- e^{-\i t a}}{-\i t} e^{\i t x} dt d \bP(x)\\ &\overset{\text{Fubini for $L^1$}}{=}& \lim_{T \to \infty} \frac{1}{2 \pi} \int_{\R} \int_{-T}^T \frac{e^{-\i t b}- e^{-\i t a}}{-\i t} e^{\i t x} dt d \bP(x)\\ &=& \lim_{T \to \infty} \frac{1}{2 \pi} \int_{\R} \int_{-T}^T \frac{e^{\i t (b-x)}- e^{\i t (x-a)}}{-\i t} dt d \bP(x)\\ &=& \lim_{T \to \infty} \frac{1}{2 \pi} \int_{\R} \underbrace{\int_{-T}^T \left[ \frac{\cos(t (x-b)) - \cos(t(x-a))}{-\i t}\right] dt d \bP(x)}_{=0 \text{, as the function is odd}} \\&& + \lim_{T \to \infty} \frac{1}{2\pi} \int_{\R}\int_{-T}^T \frac{\sin(t ( x - b)) - \sin(t(x-a))}{-t} dt d\bP(x)\\ &=& \lim_{T \to \infty} \frac{1}{\pi} \int_\R \int_{0}^T \frac{\sin(t(x-a)) - \sin(t(x-b))}{t} dt d\bP(x)\\ &\overset{\substack{\text{\autoref{fact:intsinxx},}\\\text{dominated convergence}}}{=}& \frac{1}{\pi} \int -\frac{\pi}{2} \One_{x < a} + \frac{\pi}{2} \One_{x > a } - (- \frac{\pi}{2} \One_{x < b} + \frac{\pi}{2} \One_{x > b}) d\bP(x)\\ &=& \frac{1}{2} \bP(\{a\} ) + \frac{1}{2} \bP(\{b\}) + \bP((a,b))\\ &=& \frac{F(b) + F(b-)}{2} - \frac{F(a) - F(a-)}{2} \end{IEEEeqnarray*} \end{refproof} \begin{fact} \label{fact:intsinxx} \[ \int_0^\infty \frac{\sin x}{x} dx = \frac{\pi}{2} \] where the LHS is an improper Riemann-integral. Note that the LHS is not Lebesgue-integrable. It follows that \begin{IEEEeqnarray*}{rCl} \lim_{T \to \infty} \int_0^T \frac{\sin(t(x-a))}{x} dt &=& \begin{cases} - \frac{\pi}{2}, &x < a,\\ 0, &x = a,\\ \frac{\pi}{2}, & \frac{\pi}{2} \end{cases} \end{IEEEeqnarray*} \end{fact} \begin{theorem} % Theorem 3 \label{thm:lec10_3} Let $\bP \in M_1(\R)$ such that $\phi_\R \in L^1(\lambda)$. Then $\bP$ has a continuous probability density given by \[ f(x) = \frac{1}{2 \pi} \int_{\R} e^{-\i t x} \phi_{\R}(t) dt. \] \end{theorem} \begin{example} \begin{itemize} \item Let $\bP = \delta_{\{0\}}$. Then \[ \phi_{\R}(t) = \int e^{\i t x} d \delta_0(x) = e^{\i t 0 } = 1 \] \item Let $\bP = \frac{1}{2} \delta_1 + \frac{1}{2} \delta_{-1}$. Then \[ \phi_{\R}(t) = \frac{1}{2} e^{\i t} + \frac{1}{2} e^{- \i t} = \cos(t) \] \end{itemize} \end{example} \begin{refproof}{thm:lec10_3} Let $f(x) \coloneqq \frac{1}{2 \pi} \int_{\R} e^{ - \i t x} \phi(t) dt$. \begin{claim} If $x_n \to x$, then $f(x_n) \to f(x)$. \end{claim} \begin{subproof} If $e^{-\i t x_n} \phi(t) \xrightarrow{n \to \infty} e^{-\i t x } \phi(t) $ for all $t$. Then \[ |e^{-\i t x} \phi(t)| \le |\phi(t)| \] and $\phi \in L^1$, hence $f(x_n) \to f(x)$ by the dominated convergence theorem. \end{subproof} We'll show that for all $a < b$ we have \[ \bP\left( (a,b] \right) = \int_a^b (x) dx.\label{thm10_3eq1} \] Let $F$ be the distribution function of $\bP$. It is enough to prove \autoref{thm10_3eq1} for all continuity points $a $ and $ b$ of $F$. We have \begin{IEEEeqnarray*}{rCl} RHS &\overset{\text{Fubini}}{=}& \frac{1}{2 \pi} \int_{\R} \int_{a}^b e^{-\i t x} \phi(t) dx dt\\ &=& \frac{1}{2 \pi} \int_\R \phi(t) \int_a^b e^{-\i t x} dx dt\\ &=& \frac{1}{2\pi} \int_{\R} \phi(t) \left( \frac{e^{-\i t b} - e^{-\i t a}}{- \i t} \right) dt\\ &\overset{\text{dominated convergence}}{=}& \lim_{T \to \infty} \frac{1}{2\pi} \int_{-T}^{T} \phi(t) \left( \frac{e^{-\i t b} - e^{- \i t a}}{- \i t} \right) dt \end{IEEEeqnarray*} By \autoref{inversionformula}, the RHS is equal to $F(b) - F(a) = \bP\left( (a,b] \right)$. \end{refproof} However, Fourier analysis is not only useful for continuous probability density functions: \begin{theorem}[Bochner's formula for the mass at a point]\label{bochnersformula} % Theorem 4 Let $\bP \in M_1(\lambda)$. Then \[ \forall x \in \R ~ \bP\left( \{x\} \right) = \lim_{T \to \infty} \frac{1}{2 T} \int_{-T}^T e^{-\i t x } \phi(t) dt. \] \end{theorem} \begin{refproof}{bochnersformula} We have \begin{IEEEeqnarray*}{rCl} RHS &=& \lim_{T \to \infty} \frac{1}{2 T} \int_{-T}^T e^{-\i t x} \int_{\R} e^{\i t y} d \bP(y) \\ &\overset{\text{Fubini}}{=}& \lim_{T \to \infty} \frac{1}{2 T} \int_\R \bP(dy) \int_{-T}^T \underbrace{e^{-\i t (y - x)}}_{\cos(t ( y - x)) + \i \sin(t (y-x))} dt\\ &=& \lim_{T \to \infty} \frac{1}{2T} \int_{\R} d\bP(y) \int_{-T}^T \cos(t(y - x)) dt\\ &=& \lim_{T \to \infty} \frac{1}{2 T }\int_{\R} \frac{2 \sin(T (y-x)}{T (y-x)} d \bP(y)\\ \end{IEEEeqnarray*} Furthermore \[ \lim_{T \to \infty} \frac{\sin(T(x-y)}{T (y- x)} = \begin{cases} 1, &y = x,\\ 0, &y \neq x. \end{cases} \] Hence \begin{IEEEeqnarray*}{rCl} \lim_{T \to \infty} \frac{1}{2 T }\int_{\R} \frac{2 \sin(T (y-x)}{T (y-x)} d \bP(y) &=& \bP\left( \{x\}\right) \end{IEEEeqnarray*} % TODO by dominated convergence? \end{refproof} \begin{theorem} % Theorem 5 \label{thm:lec_10thm5} Let $\phi$ be the characteristic function of $\bP \in M_1(\lambda)$. Then \begin{enumerate}[(a)] \item $\phi(0) = 1$, $|\phi(t)| \le t$ and $\phi(\cdot )$ is continuous. \item $\phi$ is a \vocab{positive definite function}, i.e.~ \[\forall t_1,\ldots, t_n \in \R, (c_1,\ldots,c_n) \in \C^n ~ \sum_{j,k = 1}^n c_j \overline{c_k} \phi(t_j - t_k) \ge 0 \] (equivalently, the matix $(\phi(t_j- t_k))_{j,k}$ is positive definite. \end{enumerate} \end{theorem} \begin{refproof}{thm:lec_10thm5} Part (a) is obvious. % TODO For part (b) we have: \begin{IEEEeqnarray*}{rCl} \sum_{j,k} c_j \overline{c_k} \phi(t_j - t_k) &=& \sum_{j,k} c_j \overline{c_k} \int_\R e^{\i (t_j - t_k) x} d \bP(x)\\ &=& \int_{\R} \sum_{j,k} c_j \overline{c_k} e^{\i t_j x} \overline{e^{\i t_k x}} d\bP(x)\\ &=& \int_{\R}\sum_{j,k} c_j e^{\i t_j x} \overline{c_k e^{\i t_k x}} d\bP(x)\\ &=& \int_{\R} \left| \sum_{l} c_l e^{\i t_l x}\right|^2 \ge 0 \end{IEEEeqnarray*} \end{refproof} \begin{theorem}[Bochner's theorem]\label{bochnersthm} The converse to \autoref{thm:lec_10thm5} holds, i.e.~ any $\phi: \R \to \C$ satisfying (a) and (b) of \autoref{thm:lec_10thm5} must be the Fourier transform of a probability measure $\bP$ on $(\R, \cB(\R))$. \end{theorem} Unfortunately, we won't prove \autoref{bochnersthm} in this lecture. \begin{definition}[Convergence in distribution / weak convergence] We say that $\bP_n \subseteq M_1(\R)$ \vocab[Convergence!weak]{converges weakly} towards $\bP \in M_1(\R)$ (notation: $\bP_n \implies \bP$), iff \[ \forall f \in C_b(\R)~ \int f d\bP_n \to \int f d\bP. \] Where \[ C_b(\R) \coloneqq \{ f: \R \to \R \text{ continuous and bounded}\} \] In analysis, this is also known as $\text{weak}^\ast$ convergence. \end{definition} \begin{remark} This notion of convergence makes $M_1(\R)$ a separable metric space. We can construc a metric on $M_1(\R)$ that turns $M_1(\R)$ into a complete and separable metric space: Consider the sets \[ \{\bP \in M_1(\R): \forall i=1,\ldots,n ~ \int f d \bP - \int f_i d\bP < \epsilon \} \] for any $f,f_1,\ldots, f_n \in C_b(\R)$. These sets form a basis for the topology on $M_1(\R)$. More of this will follow later. \end{remark} \begin{example} \begin{itemize} \item Let $\bP_n = \delta_{\frac{1}{n}}$. Then $\int f d \bP_n = f(\frac{1}{n}) \to f(0) = \int f d \delta_0$ for any continuous, bounded function $f$. Hence $\bP_n \to \delta_0$. \item $\bP_n \coloneqq \delta_n$ does not converge weakly, as for example \[ \int \cos(\pi x) d\bP_n(x) \] does not converge. \item $\bP_n \coloneqq \frac{1}{n} \delta_n + (1- \frac{1}{n}) \delta_0$. Let $f \in C_b(\R)$ arbitrary. Then \[ \int f d\bP_n = \frac{1}{n}(n) + (1 - \frac{1}{n}) f(0) \to f(0) \] since $f$ is bounded. Hence $\bP_n \implies \delta_0$. \item $\bP_n \coloneqq \frac{1}{\sqrt{2 \pi n}} e^{-\frac{x^2}{2n}}$. This ``converges'' towards the $0$-measure, which is not a probability measure. Hence $\bP_n$ does not converge weakly. (Exercise) % TODO \end{itemize} \end{example} \begin{definition} We say that a series of random variables $X_n$ \vocab[Convergence!in distribution]{converges in distribution} to $X$ (notation: $X_n \xrightarrow{\text{dist}} X$), iff $\bP_n \implies \bP$, where $\bP_n$ is the distribution of $X_n$ and $\bP$ is the distribution of $X$. \end{definition} \begin{example} Let $X_n \coloneqq \frac{1}{n}$ and $F_n$ the distribution function, i.e.~$F_n = \One_{[\frac{1}{n},\infty)}$. Then $\bP_n = \delta_{\frac{1}{n}} \implies \delta_0$ which is the distribution of $X \equiv 0$. But $F_n(0) \centernot\to F(0)$. \end{example} \begin{theorem} % Theorem 1 \label{lec10_thm1} $X_n \xrightarrow{\text{dist}} X$ iff $F_n(t) \to F(t)$ for all continuity points $t$ of $F$. \end{theorem} \begin{theorem}[Levy's continuity theorem]\label{levycontinuity} % Theorem 2 $X_n \xrightarrow{\text{dist}} X$ iff $\phi_{X_n}(t) \to \phi(t)$ for all $t \in \R$. \end{theorem} We will assume these two theorems for now and derive the central limit theorem. The theorems will be proved later.