% Lecture 1 - 2023-04-04 First, let us recall some basic definitions: \begin{definition} A \vocab{probability space} is a triplet $(\Omega, \cF, \bP)$, such that \begin{itemize} \item $\Omega \neq \emptyset$, \item $\cF$ is a $\sigma$-algebra over $\Omega$, i.e.~$\cF \subseteq \cP(\Omega)$ and \begin{itemize} \item $\emptyset, \Omega \in \cF$, \item $A \in \cF \implies A^c \in \cF$, \item $A_1, A_2,\ldots \in \cF \implies \bigcup_{i \in \N} A_i \in \cF$. \end{itemize} The elements of $\cF$ are called \vocab[Event]{events}. \item $\bP$ is a \vocab{probability measure}, i.e.~$\bP$ is a function $\bP: \cF \to [0,1]$ such that \begin{itemize} \item $\bP(\emptyset) = 1$, $\bP(\Omega) = 1$, \item $\bP\left( \bigsqcup_{n \in \N} A_n \right) = \sum_{n \in \N} \bP(A_n)$ for mutually disjoint $A_n \in \cF$. \end{itemize} \end{itemize} \end{definition} \begin{definition} A \vocab{random variable} $X : (\Omega, \cF) \to (\R, \cB(\R))$ is a measurable function, i.e.~for all $B \in \cB(\R)$ we have $X^{-1}(B) \in \cF$. (Equivalently $X^{-1}\left( (a,b] \right) \in \cF$ for all $a < b \in \R$ ). \end{definition} \begin{definition} $F: \R \to \R_+$ is a \vocab{distribution function} iff \begin{itemize} \item $F$ is monotone non-decreasing, \item $F$ is right-continuous, \item $\lim_{x \to -\infty} F(x) = 0$ and $\lim_{x \to \infty} F(x) = 1$. \end{itemize} \end{definition} \begin{fact} Let $\bP$ be a probability measure on $(\R, \cB(\R))$. Then $F(x) \coloneqq\bP\left( (-\infty, x] \right)$ is a probability distribution function. (See lemma 2.4.2 in the lecture notes of Stochastik) \end{fact} The converse to this fact is also true: \begin{theorem}[Kolmogorov's existence theorem / basic existence theorem of probability theory] \label{kolmogorovxistence} Let $\cF(\R)$ be the set of all distribution functions on $\R$ and let $\cM(\R)$ be the set of all probability measures on $\R$. Then there is a one-to-one correspondence between $\cF(\R)$ and $\cM(\R)$ given by \begin{IEEEeqnarray*}{rCl} \cM(\R) &\longrightarrow & \cF(\R)\\ \bP &\longmapsto & \begin{pmatrix*}[l] \R &\longrightarrow & \R_+ \\ x &\longmapsto & \bP((-\infty, x]). \end{pmatrix*} \end{IEEEeqnarray*} \end{theorem} \begin{proof} See theorem 2.4.3 in Stochastik. \end{proof} \begin{example}[Some important probability distribution functions]\hfill \begin{enumerate}[(1)] \item \vocab{Uniform distribution} on $[0,1]$: \[ F(x) = \begin{cases} 0 & x \in (-\infty, 0],\\ x & x \in (0,1],\\ 1 & x \in (1,\infty).\\ \end{cases} \] \item \vocab{Exponential distribution}: \[ F(x) = \begin{cases} 1 - e^{-\lambda x} & x \ge 0,\\ 0 & x < 0. \end{cases} \] \item \vocab{Gaussian distribution}: \[ \Phi(x) \coloneqq \frac{1}{\sqrt{2\pi}} \int_{-\infty}^x e^{-\frac{y^2}{2}} dy. \] \item $\bP[X = 1] = \bP[X = -1] = \frac{1}{2}$ : \[ F(x) = \begin{cases} 0 & x \in (-\infty, -1),\\ \frac{1}{2} & x \in [-1,1),\\ 1 & x \in [1, \infty). \end{cases} \] \end{enumerate} \end{example}