\lecture{4}{}{End of proof of Kolmogorov's consistency theorem} To finish the proof of \autoref{claim:lambdacountadd}, we need the following: \begin{fact} \label{lec4fact1} Suppose $\{x_k^{(n)}\}_{n \in \N}$ is a bounded sequence of real numbers for each $k \in \N$. Then there exists a strictly increasing sequence of natural number $\{n_i\}_{i\in \N}$ such that for all $k \in \N$ the series $\{x_k^{(n_i)}\}_{i \in \N}$ converges. \end{fact} \begin{proof} We'll use a diagonalization argument. For $S \subseteq \N$ infinite, we say that a sequence of real number, $(x_n)_{n \in \N}$, \vocab[Convergence along a subset]{converges along $S$}, if \[ \lim_{\substack{n \to \infty\\n \in S}} x_n \] exists. Let $S_1$ be such that $\{x_1^{(n)}\}_{n \in \N}$ converges along $S_1$. Such an $S_1$ exists by Bolzano-Weierstraß. We proceed recursively. Suppose we have already chosen $S_1,\ldots, S_{k-1}$. Consider $\{x_k^{(n)}\}_{n \in S_{k-1}}$. By Bolzano-Weierstraß, there exists $S_k \subseteq S_{k-1}$ such that $\{x_{k}^{(n)}\}_{n \in S_{k-1}}$ converges along $S_k$. For an infinite subset $T \subseteq \N$ and $\nu \in \N$ let $\# \nu(T)$ denote the $\nu$-th smallest element of $T$. Let \[ S \coloneqq \{\#\nu(S_k) : k \in \N\}. \] Since $S_{k+1} \subseteq S_k$, we have $\#(k+1)(S_{k+1}) > \#k(S_{k+1}) \ge \# k (S_k)$. Hence $S$ is infinite. Each $\{x_k^{(n)}\}_{n \in \N}$ converges along $S$, since all but finitely many elements of $S$ belong to $S_k$. \end{proof} \begin{lemma} \label{lem:intersectioncompactsets} Let $\{K_n\}_{n \in \N}$ be a sequence of compact sets $K_n \subseteq \R^{l_n}$ for some $l_n$. Suppose for all $n$ \[ \bigcap_{i=1}^n K_i^\ast \neq \emptyset. \] Then \[ \bigcap_{i\in \N} K_i^\ast \neq \emptyset. \] \end{lemma} \begin{refproof}{lem:intersectioncompactsets} We know from analysis that if $\{K_n\}_{n \in \N}$ is a sequence of compact sets such that the intersection of finitely many of them is non-empty, then \[ \bigcap_{n \in \N} K_n \neq \emptyset. \] Here, different $K_n$ may have different dimensions $l_n$, but we can view them as subsets of $\R^\infty$ by applying ${}^\ast$. For each $n$, choose $x^{(n)} \in \bigcap_{i =1}^n K_i^\ast$. We can assume $x ^{(n)}_k = 0$ for $k > \max \{l_1,\ldots, l_n\}$. For all $k \in \N$ we will show that $\{x_k^{(n)}\}$ is bounded. \begin{itemize} \item Case 1: Suppose every $l_n \le k$. Then $\{x_k^{(n)}\}_n$ only contains zeros. \item Case 2: Suppose some $l_{n_0} \ge k$. Let $Z$ be the projection of $K_{n_0} \subseteq \R^{l_{n_0}}$ onto its $k$-th component. $Z$ is a compact subset of $\R$. Hence it is bounded. For all $n \ge n_0$, we have $x^{(n)} \in K_{n_0}^\ast$ and $x_k^{(n)} \in Z$, so $\{x_k^{(n)}\}_n$ is bounded. \end{itemize} By \autoref{lec4fact1}, there is an infinite set $S \subseteq \N$, such that $\{x_k^{(n)}\}_{n \in S}$ converges for every $k$. Let $x_k \coloneqq \lim_{\substack{n \to \infty\\n \in S}} x_k^{(n)}$. Now let $x = (x_1,x_2,\ldots)\in \R^{\infty}$. \begin{claim} $x \in \bigcap_{i \in \N} K_i^\ast$. \end{claim} \begin{subproof} Consider $x^{(n)}$ for $n > i$ and $n \in S$. Then $(x^{(n)}_1, \ldots, x^{(n)}_{l_i}) \in K_i$ and \[ \lim_{\substack{n \to \infty\\n \in S}} (x^{(n)}_1, \ldots, x^{(n)}_{l_i}) = (x_1,\ldots, x_{l_i}). \] Since $K_i$ is compact, it follows that $x \in K_i^\ast$. \end{subproof} \end{refproof} \begin{refproof}{claim:lambdacountadd} In order to apply \autoref{fact:finaddtocountadd}, we need the following: \begin{claim} For any sequence $B_n \in \cF$ with $B_n \xrightarrow{n\to \infty} \emptyset$ we have $\lambda(B_n) \xrightarrow{n \to \infty} 0$. \end{claim} \begin{subproof} Suppose that $B_1^\ast \supseteq B_2^\ast \supseteq \ldots$ is a decreasing sequence such that $\lim_{n \to \infty} \lambda(B_n^\ast) = \epsilon > 0$. For each $n$, let $l_n$ be such that $B_n \in \cB_{l_n}$. By regularity of Borel probability measures, % % TODO see the proof of Caratheodory extension theorem given $\epsilon > 0$, there exists a compact set $L_n \subseteq B_n$, such that \[ (\mu_1 \otimes \ldots \otimes\mu_n)(B_n \setminus L_n) < \frac{\epsilon}{2^{n+1}} \] We have \[ B_n^\ast \setminus \bigcap_{k=1}^n L_k^\ast % \subseteq \bigcup_{k=1}^n \left( B_k^\ast \setminus L_k^\ast \right). \] Hence \begin{IEEEeqnarray*}{rCl} \lambda\left( B_n^\ast \setminus \bigcap_{k=1}^n L_k^\ast \right) &\le & \lambda\left(\bigcup_{k=1}^n % B_k^\ast \setminus L_k^\ast \right) \\ &\le & \sum_{k=1}^{n} \lambda(B_k^\ast \setminus L_k^\ast)\\ &\le& \sum_{k=1}^{n} \frac{\epsilon}{2^{k+1}}\\ &\le & \frac{\epsilon}{2}. \end{IEEEeqnarray*} By our assumption, $\lambda(B_n^\ast) \downarrow \epsilon > 0$. Hence $\lambda(B_n^\ast) \ge \epsilon$ for all $n$. Thus \[ \lambda\left( \bigcap_{k=1}^n L_k^\ast \right) % \ge \epsilon - \frac{\epsilon}{2} = \frac{\epsilon}{2}. \] In particular, for all $n$ \[ \bigcap_{k=1}^n L_k^\ast \neq \emptyset. \] By \autoref{lem:intersectioncompactsets}, it follows that \[ \bigcap_{k \in \N} L_k^\ast \neq \emptyset. \] Since \[ \bigcap_{k \in \N} B_k^\ast \supseteq \bigcap_{k \in \N} L_k^\ast, \] we have $\bigcap_{k \in \N} B_k^\ast \neq \emptyset$. \end{subproof} \end{refproof} The measure $\lambda$ is as desired: For all $n \in \N$ take some $B_n \in \cB_1$ and let $C_n \coloneqq \prod_{i=1}^n B_i$. Then $C_n^\ast \downarrow \prod_{i=1}^{\infty} B_i$, hence \begin{IEEEeqnarray*}{rCl} \lambda\left( \prod_{i=1}^{\infty} B_i \right) &\overset{\text{continuity}}{=}& \lim_{N \to \infty} \lambda(C_N^\ast)\\ &=& \lim_{N \to \infty} \lambda_N(C_N^\ast)\\ &=& \lim_{N \to \infty} \prod_{n=1}^{N} \mu_n(B_n)\\ &=& \prod_{n \in \N} \mu_n(B_n). \end{IEEEeqnarray*} For the definition of $\lambda$ as well as the proof of \autoref{claim:lambdacountadd} we have only used that $(\lambda_n)_{n \in \N}$ is a consistent family. Hence we have in fact shown \autoref{thm:kolmogorovconsistency}.