% Lecture 8 2023-05-02 \subsection{Kolmogorov's 0-1-law} Some classes of events always have probability $0$ or $1$. One example of such a 0-1-law is the Borel-Cantelli Lemma and its inverse statement. We now want to look at events that capture certain aspects of long term behaviour of sequences of random variables. \begin{definition} Let $X_n, n \in \N$ be a sequence of random variables on a probability space $(\Omega, \cF, \bP)$. Let $\cT_i \coloneqq \sigma(X_i, X_{i+1}, \ldots )$ be the $\sigma$-algebra generated by $X_i, X_{i+1}, \ldots$. Then the \vocab{tail-$\sigma$-algebra} is defined as \[ \cT \coloneqq \bigcap_{i \in \N} \cT_i. \] The events $A \in \cT \subseteq \cF$ are called \vocab[Tail event]{tail events}. \end{definition} \begin{remark} \begin{enumerate}[(i)] \item Since intersections of arbitrarily many $\sigma$-algebras is again a $\sigma$-algebra, $\cT$ is indeed a $\sigma$-algebra. \item We have \[ \cT = \{A \in \cF ~|~ \forall i ~ \exists B \in \cB(\R)^{\otimes \N} : A = \{\omega | (X_i(\omega), X_{i+1}(\omega), \ldots) \in B\} \}. % TODO? \] \end{enumerate} \end{remark} \begin{example}[What are tail events?] Let $X_n, n \in \N$ be a sequence of independent random variables on a probability space $(\Omega, \cF, \bP)$. Then \begin{enumerate}[(i)] \item $\left\{\omega | \sum_{n \in \N} X_n(\omega) \text{ converges} \right\}$ is a tail event, since for all $\omega \in \Omega$ we have \begin{IEEEeqnarray*}{rCl} && \sum_{i=1}^\infty X_i(\omega) \text{ converges}\\ &\iff& \sum_{i=2}^\infty X_i(\omega) \text{ converges}\\ &\iff& \ldots \\ &\iff& \sum_{i=k}^\infty X_i(\omega) \text{ converges}.\\ \end{IEEEeqnarray*} (Since the $X_i$ are independent, the convergence of $\sum_{n \in \N} X_n$ is not influenced by $X_1,\ldots, X_k$ for any $k$.) \item $\left\{\omega | \sum_{n \in \N} X_n(\omega) = c\right\} $ for some $c \in \R$ is not a tail event, because $\sum_{n \in \N} X_n$ depends on $X_1$. \item $\{\omega | \lim_{n \to \infty} \frac{1}{n} \sum_{i=1}^{n} X_i(\omega) = c\}$ is a tail event, since \[ c = \lim_{n \to \infty} \sum_{i=1}^{n} X_i = \underbrace{\lim_{n \to \infty} \frac{1}{n} X_1}_{= 0} + \lim_{n \to \infty} \frac{1}{n} \sum_{i=2}^n X_i = \ldots = \lim_{n \to \infty} \frac{1}{n} \sum_{i=k}^n X_i. \] \end{enumerate} \end{example} So $\cT$ includes all long term behaviour of $X_n, n \in \N$, which does not depend on the realisation of the first $k$ random variables for any $k \in \N$. \begin{theorem}[Kolmogorov's 0-1 law] \label{kolmogorov01} Let $X_n, n \in \N$ be a sequence of independent random variables and let $\cT$ denote their tail-$\sigma$-algebra. Then $\cT$ is \vocab{$\bP$-trivial}, i.e.~$\bP[A] \in \{0,1\}$ for all $A \in \cT$. \end{theorem} \begin{idea} The idea behind proving, that a $\cT$ is $\bP$-trivial is to show that for any $A, B \in \cF$ we have \[ \bP[A \cap B] = \bP[A] \cdot \bP[B]. \] Taking $A = B$, it follows that $\bP[A] = \bP[A]^2$, hence $\bP[A] \in \{0,1\}$. \end{idea} \begin{refproof}{kolmogorov01} Let $\cF_n \coloneqq \sigma(X_1,\ldots,X_n)$ and remember that $\cT_{n} = \sigma(X_{n}, X_{n+1},\ldots)$. The proof rests on two claims: \begin{claim} For all $n \ge 1$, $A \in \cF_n$ and $B \in \cT_{n+1}$ we have $\bP[A \cap B] = \bP[A]\bP[B]$. \end{claim} \begin{subproof} This follows from the independence of the $X_i$. It is \[ \sigma\left( X_1,\ldots,X_n \right) = \sigma\left(\underbrace{\{X_{1}^{-1}(B_1) \cap \ldots \cap X_n^{-1}(B_n) | B_1,\ldots,B_n \in \cB(\R)\}}_{\text{\reflectbox{$\coloneqq$}}\cA} \right). \] $\cA$ is a semi-algebra, since \begin{enumerate}[(i)] \item $\emptyset, \Omega \in \cA$, \item $A, B \in \cA \implies A \cap B \in \cA$, \item for $A \in \cA$, $A^c = \bigsqcup_{i=1}^n A_i$ for disjoint sets $A_1,\ldots,A_n \in \cA$. \end{enumerate} Hence it suffices to show the claim for sets $A \in \cA$. Similarly \[ \sigma(\cT_{n+1}) = \sigma \left( \underbrace{ \{X_{n+1}^{-1}(M_1) \cap \ldots \cap X_{n+k}^{-1}(M_k) | k \in \N, M_1,\ldots, M_k \in \cB(\R)\}}_{\text{\reflectbox{$\coloneqq$}} \cB} \right). \] Again, $\cB$ is closed under intersection. So let $A \in \cA$ and $B \in \cB$. Then \[ \bP[A \cap B] = \bP[A] \cdot \bP[B) \] by the independence of $\{X_1,\ldots,X_{n+k}\}$, and since $A$ only depends on $\{X_1,\ldots,X_n\}$ and $B$ only on $\{X_{n+1},\ldots, X_{n+k}\}$. \end{subproof} \begin{claim} $\bigcup_{n \in \N} \cF_n$ is an algebra and \[ \sigma\left( \bigcup_{n \in \N} \cF_n \right) = \sigma(X_1,X_2,\ldots) = \cT_1. \] \end{claim} \begin{subproof} ``$\supseteq$ '' If $A_n \in \sigma(X_n)$, then $A_n \in \cF_n$. Hence $A_n \in \bigcup_{n \in \N} \cF_n$. Since $\sigma(X_1,X_2,\ldots)$ is generated by $\{A_n \in \sigma(X_n) : n \in \N\}$, this also means $\sigma(X_1,X_2,\ldots) \subseteq\sigma\left( \bigcup_{n \in \N} \cF_n \right)$. ``$\subseteq$ '' Since $\cF_n = \sigma(X_1,\ldots,X_n)$, obviously $\cF_n \subseteq \sigma(X_1,\ldots,X_n)$ for all $n$. It follows that $\bigcup_{n \in \N} \cF_n \subseteq \sigma(X_1,X_2,\ldots)$. Hence $\sigma\left( \bigcup_{n \in \N} \cF_n \right) \subseteq\sigma(X_1,X_2,\ldots)$. \end{subproof} Now let $T \in \cT$. Then $T \in \cT_{n+1}$ for any $n$. Hence $\bP[A \cap T] = \bP[A] \bP[T]$ for all $A \in \cF_n$ by the first claim. It follows that the same folds for all $A \in \bigcup_{n \in \N} \cF_n$, hence for all $A \in \sigma\left( \bigcup_{n \in \N} \cF_n \right)$, and by the second claim for all $A \in \sigma(X_1,X_2,\ldots) = \cT_1$. But since $T \in \cT$, in particular $T \in \cT_1$, so by choosing $A = T$, we get \[ \bP[T] = \bP[T \cap T] = \bP[T]^2 \] hence $\bP[T] \in \{0,1\}$. \end{refproof}