\lecture{17}{2023-06-15}{} \begin{definition}[Stochastic process] % TODO \end{definition} \begin{goal} What about a ``gambling strategy''? Consider a stochastic process $(X_n)_{n \in \N}$. Note that the increments $X_{n+1} - X_n$ can be thought of as the win or loss per round of a game. Suppose that there is another stochastic process $(C_n)_{n \ge 1}$ such that $C_n$ is determined by the information gathered up until time $n$, i.e.~$C_n$ is measurable with respect to $\cF_{n-1}$. If such process $C_n$ exists, we say that $ C_n$ is \vocab[Stochastic process!previsible]{previsible}. Think of $C_n$ as our strategy of playing the game. Then $C_n(X_n - X_{n-1})$ defines the win in the $n$-th game, while \[ Y_n \coloneqq \sum_{j=1}^n C_j(X_j - X_{j-1}) \] defines the cumulative win process. \end{goal} \begin{lemma} If $(C_n)_{n \ge 1}$ is previsible and $(X_n)_{n \ge 0}$ is a (sub/super-) martingale and there exists a constant $K_n$ such that $|C_n(\omega)| \le K_n$. Then $(Y_n)_{n \ge 1}$ is also a (sub/super-) martingale. \end{lemma} \begin{proof} Exercise. \todo{Copy} \end{proof} \begin{remark} The assumption of $K_n$ being constant can be weakened to $C_n \in L^p(\bP)$, $X_n \in ^q(\bP)$ with $\frac{1}{p} + \frac{1}{q} = 1$. \end{remark} Suppose we have $(X_n)$ adapted, $X_n \in L^1(\bP)$, $(C_n)_{n \ge 1}$ previsible. We play according to the following principle: Pick two real numbers $a < b$. Wait until $X_n \le a$, then start playing. Stop playing when $X_n \ge b$. I.e.~define \begin{itemize} \item $C_1 \coloneqq 0$, \item $C_n \coloneqq \One_{\{C_{n-1} = 1\}} \cdot \One_{\{X_{n-1} \le b\}} + \One_{\{C_{n-1} = 0\} } \One_{\{X_{n-1}\} < a}$. \end{itemize} \begin{definition} Fix $N \in \N$ and let \[U_n^X([a,b]) \coloneqq \# \{\text{Upcrossings of $[a,b]$ made by $n \mapsto X_n(\omega)$ by time $n$}\},\] i.e.~$U_n([a,b])(\omega)$ is the largest $k \in \N_0$ such that we can find a sequence $0 \le s_1 < t_1 < s_2 < t_2 < \ldots < s_k < t_k \le N$ such that $X_{s_j}(\omega) < a$ and $X_{t_j}(\omega) > b$ for all $1 \le j \le k$. \end{definition} Clearly $U_N^X([a,b]) \uparrow$ as $N$ increases. It follows that the monotonic limit $U_\infty([a,b]) \coloneqq \lim_{N \to \infty} U_N([a,b])$ exists pointwise. \begin{lemma} % Lemma 1 \[ \{\omega | \liminf_{N \to \infty} Z_N(\omega) < a < b < \limsup_{N \to \infty} Z_N(\omega)\} \subseteq \{\omega: U^{Z}_\infty([a,b])(\omega) = \infty\} \] for every sequence of measurable functions $(Z_n)_{n \ge 1}$. \end{lemma} \begin{lemma} % 2 Let $Y_n(\omega) \coloneqq \sum_{j=1}^n C_j(X_j - X_{j-1})$. Then $Y_N \ge (b -a) U_N([a,b]) - (X_N - a)^{-}$. \end{lemma} \begin{proof} Every upcrossing of $[a,b]$ increases the value of $Y$ by $(b-a)$, while the last intverval of play $(X_n -a)^{-}$ overemphasizes the loss. \end{proof} \begin{lemma} %3 Suppose $(X_n)_n$ is a supermartingale. Then in the above setup, $(b-a) \bE[U_N([a,b])] \le \bE[(X_n - a)^-]$. \end{lemma} \begin{proof} Obvious from lemma 2 % TODO REF and the supermartingale property. \end{proof} \begin{corollary} Let $(X_n)_n$ be a \vocab[Supermartingale!bounded]{supermartingale bounded in $L^1(\bP)$ }, i.e.~$\sup_n \bE[|X_n| ] < \infty$. Then $(b-a) \bE(U_\infty) \le |a| + \sup_n \bE(|X_n|)$. In particular, $\bP[U_\infty = \infty] = 0$. \end{corollary} \begin{proof} By lemma 3 % TODO REF we have that \[(b-a) \bE[U_N([a,b])] \le \bE[ | X_N| ] + |a| \le \sup_n \bE[|X_n|] + |a|.\] Since $U_N(\cdot) \ge 0$ and $U_N(\cdot ) \uparrow U_\infty(\cdot )$, by the monotone convergence theorem \[ \bE(U_n([a,b])] \uparrow \bE[U_\infty([a,b])]. \] \end{proof} Assume now, that our process $(X_n)_{n \ge 1}$ is a supermartingale bounded in $L^1(\bP)$. Let \[ \Lambda \coloneqq \{\omega | X_n(\omega) \text{ does not converge to anything in $[-\infty,\infty]$}\}. \] We have \begin{IEEEeqnarray*}{rCl} \Lambda &=& \{\omega | \liminf_N X_N(\omega) < \limsup_N X_N(\omega)\}\\ &=& \{\omega | \liminf_N X_N(\omega) < a < b \limsup_N X_N(\omega)\} \\ &=& \bigcup_{a,b \in \Q} \underbrace{\{\omega | \liminf_N X_N(\omega) < a < b < \limsup_N X_N(\omega)\}}_{\Lambda_{a,b}} \\ \end{IEEEeqnarray*} We have $\Lambda_{a,b} \subseteq \{\omega : U_{\infty}([a,b])(\omega) = \infty\} $ by lemma 1. % TODO REF By lemma 3 % TODO REF we have $\bP(\Lambda_{a,b}) = 0$, hence $\bP(\Lambda) = 0$. Hence there exists a random variable $X_\infty$ such that $X_n \xrightarrow{a.s.} X_\infty$. \begin{claim} $\bP[X_\infty \in \{\pm \infty\}] = 0$. \end{claim} \begin{subproof} It suffices to show that $\bE[|X_\infty|] < \infty$. We have. \begin{IEEEeqnarray*}{rCl} \bE[|X_\infty|] &=& \bE[\liminf_{n \to \infty} |X_n|]\\ &\overset{\text{Fatou}}{\le }& \liminf_n \bE[|X_n|]\\ &\le & \sup_n \bE[|X_n|]\\ &<& \infty. \end{IEEEeqnarray*} \end{subproof} We have thus shown \begin{theorem}[Doob's martingale convergence theorem] \label{doobmartingaleconvergence} Any supermartingale bounded in $L^1$ converges almost surely to a random variable, which is almost surely finite. In particular, any non-negative supermartingale converges a.s.~to a finite random variable. \end{theorem} The second part follows from \begin{claim} Any non-negative supermartingale is bounded in $L^1$. \end{claim} \begin{subproof} We need to show $\sup_n \bE(|X_n|) < \infty$. Since the supermartingale is non-negative, we have $\bE[|X_n|] = \bE[X_n]$ and since it is a supermartingale $\bE[X_n] \le \bE[X_0]$. \end{subproof} \todo{rearrange proof} \begin{example}[Branching process] % TODO \end{example}