\lecture{20}{2023-06-27}{} \begin{refproof}{ceismartingale} By the \yaref{cetower} it is clear that $(\bE[X | \cF_n])_n$ is a martingale. First step: Assume that $X$ is bounded. Then, by \yaref{cjensen}, $|X_n| \le \bE[|X| | \cF_n]$, hence $\sup_{\substack{n \in \N \\ \omega \in \Omega}} | X_n(\omega)| < \infty$. Thus $(X_n)_n$ is a martingale in $L^{\infty} \subseteq L^2$. By the convergence theorem for martingales in $L^2$ (\yaref{martingaleconvergencel2}) there exists a random variable $Y$, such that $X_n \xrightarrow{L^2} Y$. Fix $m \in \N$ and $A \in \cF_m$. Then \begin{IEEEeqnarray*}{rCl} \int_A Y \dif \bP &=& \lim_{n \to \infty} \int_A X_n \dif \bP\\ &=& \lim_{n \to \infty} \bE[X_n \One_A]\\ &=& \lim_{n \to \infty} \bE[\bE[X | \cF_n] \One_A]\\ &\overset{A \in \cF_n}{=}& \lim_{\substack{n \to \infty\\n \ge m}} \bE[X \One_A]\\ \end{IEEEeqnarray*} Hence $\int_A Y \dif \bP = \int_A X \dif \bP$ for all $m \in \N, A \in \cF_m$. Since $\sigma(X) = \bigcup \cF_n$ this holds for all $A \in \sigma(X)$. Hence $X = Y$ a.s., so $X_n \xrightarrow{L^2} X$. Since $(X_n)_n$ is uniformly bounded, this also means $X_n \xrightarrow{L^p} X$. Second step: Now let $X \in L^p$ be general and define \[ X'(\omega) \coloneqq \begin{cases} X(\omega)& \text{ if } |X(\omega)| \le M,\\ 0&\text{ otherwise} \end{cases} \] for some $M > 0$. Then $X' \in L^\infty$ and \begin{IEEEeqnarray*}{rCl} \int | X - X'|^p \dif \bP &=& \int_{\{|X| > M\} } |X|^p \dif \bP \xrightarrow{M \to \infty} 0 \end{IEEEeqnarray*} as $\bP$ is regular, i.e.~$\forall \epsilon > 0 . ~\exists k . ~ \bP[|X|^p \in [-k,k]] \ge 1-\epsilon$. Take some $\epsilon > 0$ and $M$ large enough such that \[ \int |X - X'| \dif \bP < \epsilon. \] Let $(X_n')_n$ be the martingale given by $(\bE[X' | \cF_n])_n$. Then $X_n' \xrightarrow{L^p} X'$ by the first step. It is \begin{IEEEeqnarray*}{rCl} \|X_n - X_n'\|_{L^p}^p &=& \bE[\bE[X - X' | \cF_n]^{p}]\\ &\overset{\yaref{cjensen}}{\le}& \bE[\bE[(X - X')^p | \cF_n]]\\ &=& \|X - X'\|_{L^p}^p\\ &<& \epsilon. \end{IEEEeqnarray*} Hence \[ \|X_n - X\|_{L^p} % \le \|X_n - X_n'\|_{L^p} + \|X_n' - X'\|_{L^p} + \|X - X'\|_{L^p} % \le 3 \epsilon. \] Thus $X_n \xrightarrow{L^p} X$. \end{refproof} For the proof of \yaref{martingaleisce}, we need the following theorem, which we won't prove here: \begin{theorem}[Banach Alaoglu] \yalabel{Banach Alaoglu}{Banach Alaoglu}{banachalaoglu} Let $X$ be a normed vector space and $X^\ast$ its continuous dual. Then the closed unit ball in $X^\ast$ is compact w.r.t.~the ${\text{weak}}^\ast$ topology. \end{theorem} \begin{fact} We have $L^p \cong (L^q)^\ast$ for $\frac{1}{p} + \frac{1}{q} = 1$ via \begin{IEEEeqnarray*}{rCl} L^p &\longrightarrow & (L^q)^\ast \\ f &\longmapsto & (g \mapsto \int g f \dif\bP) \end{IEEEeqnarray*} We also have $(L^1)^\ast \cong L^\infty$, however $ (L^\infty)^\ast \not\cong L^1$. \end{fact} \begin{refproof}{martingaleisce} Since $(X_n)_n$ is bounded in $L^p$, by \yaref{banachalaoglu}, there exists $X \in L^p$ and a subsequence $(X_{n_k})_k$ such that for all $Y \in L^q$, where as always $\frac{1}{p} + \frac{1}{q} = 1$, \[ \int X_{n_k} Y \dif \bP \to \int XY \dif \bP \] (Note that this argument does not work for $p = 1$, because $(L^\infty)^\ast \not\cong L^1$). Let $A \in \cF_m$ for some fixed $m$ and choose $Y = \One_A$. Then \begin{IEEEeqnarray*}{rCl} \int_A X \dif \bP &=& \lim_{k \to \infty} \int_A X_{n_k} \dif \bP\\ &=& \lim_{k \to \infty} \bE[X_{n_k} \One_A]\\ &\overset{\text{for }n_k \ge m}{=}& \bE[X_m \One_A]. \end{IEEEeqnarray*} Hence $X_n = \bE[X | \cF_m]$ by the uniqueness of conditional expectation and by \yaref{ceismartingale}, we get the convergence. \end{refproof} \begin{example}+[\vocab{Branching Process}; Exercise 10.1, 12.4] Let $(Y_{n,k})_{n \in \N_0, k \in \N}$ be i.i.d.~with values in $\N_0$ such that $0 < \bE[Y_{n,k}] = m < \infty$. Define \[ S_0 \coloneqq 1, S_n \coloneqq \sum_{k=1}^{S_{n-1}} Y_{n-1,k} \] and let $M_n \coloneqq \frac{S_n}{m^n}$. $S_n$ models the size of a population. \begin{claim} $M_n$ is a martingale. \end{claim} \begin{subproof} We have \begin{IEEEeqnarray*}{rCl} \bE[M_{n+1} - M_n | \cF_n] &=& \frac{1}{m^n} \left( \frac{1}{m}\sum_{k=1}^{S_{n}} \bE[X_{n,k}] - S_n\right)\\ &=& \frac{1}{m^n}(S_n - S_n). \end{IEEEeqnarray*} \end{subproof} \begin{claim} $(M_n)_{n \in \N}$ is bounded in $L^2$ iff $m > 1$. \end{claim} \todo{TODO} \begin{claim} If $m > 1$ and $M_n \to M_\infty$, then \[ \Var(M_\infty) = \sigma^2(m(m-1))^{-1}. \] \end{claim} \todo{TODO} \end{example} \subsection{Stopping Times} \begin{definition}[Stopping time] \label{def:stopping-time} A random variable $T: \Omega \to \N_0 \cup \{\infty\}$ on a filtered probability space $(\Omega, \cF, \{\cF_n\}_n, \bP)$ is called a \vocab{stopping time}, if \[ \{T \le n\} \in \cF_n \] for all $n \in \N$. Equivalently, $\{T = n\} \in \cF_n$ for all $n \in \N$. \end{definition} \begin{example} A constant random variable $T = c$ is a stopping time. \end{example} \begin{example}[Hitting times] For an adapted process $(X_n)_n$ with values in $\R$ and $A \in \cB(\R)$, the \vocab{hitting time} \[ T \coloneqq \inf \{n \in \N : X_n \in A\} \] is a stopping time, as \[ \{T \le n \} = \bigcup_{k=1}^n \{X_k \in A\} \in \cF_n. \] However, the last exit time \[ T \coloneqq \sup \{n \in \N : X_n \in A\} \] is not a stopping time. \end{example} \begin{example} Consider the simple random walk, i.e. $X_n$ i.i.d.~with $\bP[X_n = 1] = \bP[X_n = -1] = \frac{1}{2}$. Set $S_n \coloneqq \sum_{i=1}^{n} X_n$. Then \[ T \coloneqq \inf \{n \in \N : S_n \ge A \lor S_n \le B\} \] is a stopping time. \end{example} \begin{fact} If $T_1, T_2$ are stopping times with respect to the same filtration, then \begin{itemize} \item $T_1 + T_2$, \item $\min \{T_1, T_2\}$ and \item $\max \{T_1, T_2\}$ \end{itemize} are stopping times. \end{fact} \begin{warning} Note that $T_1 - T_2$ is not a stopping time. \end{warning} \begin{remark} There are two ways to look at the interaction between a stopping time $T$ and a stochastic process $(X_n)_n$: \begin{itemize} \item The behaviour of $ X_n$ until $T$, i.e. \[ X^T \coloneqq \left(X_{T \wedge n}\right)_{n \in \N} \] is called the \vocab{stopped process}. \item The value of $(X_n)_n)$ at time $T$, i.e.~looking at $X_T$. \end{itemize} \end{remark} \begin{example} If we look at a process \[ S_n = \sum_{i=1}^{n} X_i \] for some $(X_n)_n$, then \[ S^T = (\sum_{i=1}^{T \wedge n} X_i)_n \] and \[ S_T = \sum_{i=1}^{T} X_i. \] \end{example} \begin{theorem} If $(X_n)_n$ is a supermartingale and $T$ is a stopping time, then $X^T$ is also a supermartingale, and we have $\bE[X_{T \wedge n}] \le \bE[X_0]$ for all $n$. If $(X_n)_n$ is a martingale, then so is $X^T$ and $\bE[X_{T \wedge n}] = \bE[X_0]$. \end{theorem} \begin{proof} First, we need to show that $X^T$ is adapted. This is clear since \begin{IEEEeqnarray*}{rCl} X^T_n &=& X_T \One_{T < n} + X_n \One_{T \ge n}\\ &=& \sum_{k=1}^{n-1} X_k \One_{T = k} + X_n \One_{T \ge n}. \end{IEEEeqnarray*} It is also clear that $X^T_n$ is integrable since \[ \bE[|X^T_n|] \le \sum_{k=1}^{n} \bE[|X_k|] < \infty. \] We have \begin{IEEEeqnarray*}{rCl} &&\bE[X^T_n - X^T_{n-1} | \cF_{n-1}]\\ &=& \bE\left[X_n \One_{\{T \ge n\}} + \sum_{k=1}^{n-1} X_k \One_{\{ T = k\} } - X_{n-1}(\One_{T \ge n} + \One_{\{T = n-1\}})\right.\\ &&\left.+ \sum_{k=1}^{n-2} X_k \One_{\{T = k\} } \middle| \cF_{n-1}\right]\\ &=& \bE[(X_n - X_{n-1}) \One_{\{ T \ge n\} } | \cF_{n-1}]\\ &=& \One_{\{ T \ge n\}} (\bE[X_n | \cF_{n-1}] - X_{n-1}) \begin{cases} \le 0\\ = 0 \text{ if $(X_n)_n$ is a martingale}. \end{cases} \end{IEEEeqnarray*} \end{proof} \begin{remark} \label{roptionalstoppingi} We now want a similar statement for $X_T$. In the case that $T \le M$ is bounded, we get from the above that \[ \bE[X_T] \overset{n \ge M}{=} \bE[X^T_n] \begin{cases} \le \bE[X_0] & \text{ supermartingale},\\ = \bE[X_0] & \text{ martingale}. \end{cases} \] However if $T$ is not bounded, this does not hold in general. \end{remark} \begin{example} Let $(S_n)_n$ be the simple random walk and take $T \coloneqq \inf \{n : S_n = 1\}$. Then $\bP[T < \infty] = 1$, but \[ 1 = \bE[S_T] \neq \bE[S_0] = 0. \] \end{example} \begin{theorem}[Optional Stopping] \yalabel{Optional Stopping Theorem}{Optional Stopping}{optionalstopping} Let $(X_n)_n$ be a supermartingale and let $T$ be a stopping time taking values in $\N$. If one of the following holds \begin{enumerate}[(i)] \item $T \le M$ is bounded, \item $(X_n)_n$ is uniformly bounded and $T < \infty$ a.s., \item $\bE[T] < \infty$ and $|X_n(\omega) - X_{n-1}(\omega)| \le K$ for all $n \in \N, \omega \in \Omega$ and some $K > 0$, \end{enumerate} then $\bE[X_T] \le \bE[X_0]$. If $(X_n)_n$ even is a martingale, then under the same conditions $\bE[X_T] = \bE[X_0]$. \end{theorem} \begin{proof} (i) was already done in \yaref{roptionalstoppingi}. (ii): Since $(X_n)_n$ is bounded, we get that \begin{IEEEeqnarray*}{rCl} \bE[|X_T - X_0|] &\overset{\text{dominated convergence}}{=}& \lim_{n \to \infty} \bE[|X_{T \wedge n} - X_0|]\\ &\overset{\text{part (i)}}{\le}& 0. \end{IEEEeqnarray*} (iii): It is \begin{IEEEeqnarray*}{rCl} |X_{T \wedge n}- X_0| &\le& | \sum_{k=1}^{T \wedge n} X_k - X_{k-1}|\\ &\le & (T \wedge n) \cdot K\\ &\le & T \cdot K < \infty. \end{IEEEeqnarray*} Hence, we can apply dominated convergence and obtain \begin{IEEEeqnarray*}{rCl} \bE[X_T - X_0] &=& \lim_{n \to \infty} \bE[X_{T \wedge n} - X_0]. \end{IEEEeqnarray*} Thus, we can apply (ii). The statement about martingales follows from applying this to $(X_n)_n$ and $(-X_n)_n$, which are both supermartingales. \end{proof} \begin{remark}+ Let $(X_n)_n$ be a supermartingale and $T$ a stopping time. If $(X_n)_n$ itself is not bounded, but $T$ ensures boundedness, i.e. $T < \infty$ a.s.~and $(X_{T \wedge n})_n$ is uniformly bounded, the \yaref{optionalstopping} can still be applied, as \[ \bE[X_T] = \bE[X_{T \wedge T}] \overset{\yaref{optionalstopping}}{\le} \bE[X_{T \wedge 0}] = \bE[X_0]. \] \end{remark}