\lecture{15}{2023-06-06}{} \subsection{Properties of Conditional Expectation} We want to derive some properties of conditional expectation. \begin{theorem}[Law of total expectation] \label{ceprop1} \yalabel{Law of Total Expectation}{Total Expectation}{totalexpectation} \[ \bE[\bE[X | \cG ]] = \bE[X]. \] \end{theorem} \begin{proof} Apply (b) from the definition for $G = \Omega \in \cG$. \end{proof} \begin{theorem} \label{ceprop2} If $X$ is $\cG$-measurable, then $X \overset{\text{a.s.}}{=}\bE[X | \cG]$. \end{theorem} \begin{proof} Suppose $\bP[X \neq Y] > 0$. Without loss of generality $\bP[X > Y] > 0$. Hence $\bP[ X > Y + \frac{1}{n}]> 0$ for some $n \in \N$. Let $A \coloneqq \{X > Y + \frac{1}{n}\}$. Then \[ \int_A X \dif \bP \ge \frac{1}{n}\bP(A) + \int_A Y \dif \bP, \] contradicting property (b) from \yaref{conditionalexpectation}. \end{proof} \begin{example} Suppose $X \in L^1(\bP)$, $\cG \coloneqq \sigma(X)$. Then $X$ is measurable with respect to $\cG$. Hence $\bE[X | \cG] = X$. \end{example} \begin{theorem}[Linearity] \label{ceprop3} \yalabel{Linearity of Conditional Expectation}{Linearity}{celinearity} For all $a,b \in \R$ we have \[ \bE[a X_1 + bX_2 | \cG] = a \bE[X_1 | \cG] + b \bE[X_2|\cG]. \] \end{theorem} \begin{proof} trivial\todo{add details} \end{proof} \begin{theorem}[Positivity] \label{ceprop4} \yalabel{Positivity of Conditional Expectation}{Positivity}{cpositivity} If $X \ge 0$, then $\bE[X | \cG] \ge 0$ a.s. \end{theorem} \begin{proof} Let $W $ be a version of $\bE[X | \cG]$. Suppose $\bP[ W < 0] > 0$. Then \[G \coloneqq \{W < -\frac{1}{n}\} \in \cG.\] For some $n \in \N$, we have $\bP[G] > 0$. However it follows that \[ \int_G \bP[X | \cG] \dif \bP \le -\frac{1}{n} \bP[G] < 0 \le \int_G X \dif \bP. \] \end{proof} \begin{theorem}[Conditional monotone convergence theorem] \label{ceprop5} \yalabel{Conditional Monotone Converence Theorem}{MCT}{cmct} Let $X_n,X \in L^1(\Omega, \cF, \bP)$. Suppose $X_n \ge 0$ with $X_n \uparrow X$. Then $\bE[X_n|\cG] \uparrow \bE[X|\cG]$. \end{theorem} \begin{proof} Let $Z_n$ be a version of $\bE[X_n | Y]$. Since $X_n \ge 0$ and $X_n \uparrow$, by the \yaref{cpositivity}, we have \[ \bE[X_n | \cG] \overset{\text{a.s.}}{\ge } 0 \] and \[ \bE[X_n | \cG] \uparrow \text{a.s.} \] (consider $X_{n+1} - X_n$ ). Define $Z \coloneqq \limsup_{n \to \infty} Z_n$. Then $Z$ is $\cG$-measurable and $Z_n \uparrow Z$ a.s. Take some $G \in \cG$. We know by (b) % TODO REF that $\bE[Z_n \One_G] = \bE[X_n \One_G]$. The LHS increases to $\bE[Z \One_G]$ by the monotone convergence theorem. Again by MCT, $\bE[X_n \One_G]$ increases to $\bE[X \One_G]$. Hence $Z$ is a version of $\bE[X | \cG]$. \end{proof} \begin{theorem}[Conditional Fatou] \label{ceprop6} \yalabel{Conditional Fatou's Lemma}{Fatou}{cfatou} Let $X_n \in L^1(\Omega, \cF, \bP)$, $X_n \ge 0$. Then \[ \bE[ \liminf_{n \to \infty} X_n | \cG] \le \liminf_{n \to \infty} \bE[X_n | \cG]. \] \end{theorem} \begin{proof} \notes \end{proof} \begin{theorem}[Conditional dominated convergence theorem] \label{ceprop7} \yalabel{Conditional Dominated Convergence Theorem}{DCT}{cdct} Let $X_n,Y \in L^1(\Omega, \cF, \bP)$. Suppose that $\sup_n |X_n(\omega)| < Y(\omega)$ a.e.~ and that $X_n$ converges to a pointwise limit $X$. Then $\bE[ X_n | \cG] \to \bE[X | \cG]$ a.e. \end{theorem} \begin{proof} \notes \end{proof} Recall \begin{fact}[Jensen's inequality] \yalabel{Jensen's Inequality}{Jensen}{jensen} If $c : \R \to \R$ is convex and $\bE[|c \circ X|] < \infty$, then $\bE[c \circ X] \overset{\text{a.s.}}{\ge} c(\bE[X])$. \end{fact} For conditional expectation, we have \begin{theorem}[Conditional Jensen's inequality] \label{ceprop8} \yalabel{Jensen's Inequality}{Jensen}{cjensen} Let $X \in L^1(\Omega, \cF, \bP)$. If $c : \R \to \R$ is convex and $\bE[|c \circ X|] < \infty$, then $\bE[c \circ X | \cG] \ge c(\bE[X | \cG])$ a.s. \end{theorem} \begin{fact} \label{convapprox} If $c$ is convex, then there are two sequences of real numbers $a_n, b_n \in \R$ such that \[ c(x) = \sup_n(a_n x + b_n). \] \end{fact} \begin{refproof}{cjensen} By \yaref{convapprox}, $c(x) \ge a_n X + b_n$ for all $n$. Hence \[ \bE[c(X) | \cG] \ge a_n \bE[X | \cG] + \bE[b_n | \cG] = a_n \bE[X | \cG] + b_n \text{ a.s.} \] for all $n$. Using that a countable union of sets o f measure zero has measure zero, we conclude that a.s~this happens simultaneously for all $n$. Hence \[ \bE[c(X) | \cG] \ge \sup_n (a_n \bE[X | \cG] + b_n) \overset{\yaref{convapprox}}{=} c(\bE(X | \cG)). \] \end{refproof} Recall \begin{fact}[Hölder's inequality] \yalabel{Hölder's Inequality}{Hölder}{thm:hoelder} Let $p,q \ge 1$ such that $\frac{1}{p} + \frac{1}{q} = 1$. Suppose $X \in L^p(\bP)$ and $Y \in L^q(\bP)$. Then \[ \bE(X Y) \le \underbrace{\bE(|X|^p)^{\frac{1}{p}}}_{\text{\reflectbox{$\coloneqq$}} \|X\|_{L^p}} \bE(|Y|^q)^{\frac{1}{q}}. \] \end{fact} \begin{theorem}[Conditional Hölder's inequality] \label{ceprop9} \yalabel{Hölder's Inequality}{Hölder}{choelder} Let $p,q \ge 1$ such that $\frac{1}{p} + \frac{1}{q} = 1$. Suppose $X \in L^p(\bP)$ and $Y \in L^q(\bP)$. Then \[ \bE(X Y | \cG) \le \bE(|X|^p | \cG)^{\frac{1}{p}} \bE(|Y|^q | \cG)^{\frac{1}{q}}. \] \end{theorem} % TODO % \begin{proof} % Take some $G \in \cG$. % We first consider the case of $|X(\omega)|^p, |Y(\omega)|^p > 0$ % a.s.~for $\omega \in G$. % Then % \begin{IEEEeqnarray*}{rCl} % \int_G\frac{\bE[|XY| ~ |\cG]}% % {\bE[\bE[|X|^p | \cG]^{\frac{1}{p}} \bE[|Y|^p| \cG]^{\frac{1}{q}}} % \dif \bP % &=& \int_G \frac{|X|}{\bE[|X|^p]^{\frac{1}{p}}} \frac{|Y|}{\bE[|Y|^q]^{\frac{1}{q}}} % \dif \bP\\ % &\le& \left(\int_G \frac{|X|^p}{\bE[|X|^p]} \dif \bP\right)^p % \left(\int_G \frac{|Y|^q}{\bE[|Y|^q]} \dif \bP\right)^q\\ % &=& \bE[\One_G] % \end{IEEEeqnarray*} % \end{proof} \begin{theorem}[Tower property] \label{ceprop10} \yalabel{Tower Property}{Tower}{cetower} Suppose $\cF \supset \cG \supset \cH$ are sub-$\sigma$-algebras. Then \[ \bE\left[\bE[X | \cG] \mid \cH\right] \overset{\text{a.s.}}{=} \bE[X | \cH]. \] \end{theorem} \begin{proof} By definition, $\bE[\bE[X | \cG] | \cH]$ is $\cH$-measurable. For any $H \in \cH$, we have \begin{IEEEeqnarray*}{rCl} \int_H \bE[\bE[X | \cG] | \cH] \dif \bP &=& \int_{H} \bE[X | \cG] \dif \bP\\ &=& \int_H X \dif \bP. \end{IEEEeqnarray*} Hence $\bE[\bE[X | \cG] | \cH] \overset{\text{a.s.}}{=} \bE[X | \cH]$. \end{proof} \begin{theorem}[Taking out what is known] \label{ceprop11} \label{takingoutwhatisknown} If $Y$ is $\cG$-measurable and bounded, then \[ \bE[YX| \cG] \overset{\text{a.s.}}{=} Y \bE[X | \cG]. \] \end{theorem} \begin{proof} Assume w.l.o.g.~$X \ge 0$. Assume $Y = \One_B$, then $Y$ simple, then take the limit (using that $Y$ is bounded). \todo{Exercise} \end{proof} \begin{definition} Let $\cG$ and $\cH$ be $\sigma$-algebras. We call $\cG$ and $\cH$ \vocab[$\sigma$-algebra!independent]{independent}, if $\bP(G \cap H) = \bP(G) \bP(H)$ for all events $G \in \cG$, $H \in \cH$. \end{definition} \begin{theorem}[Role of independence] \label{ceprop12} \yalabel{Role of Independence}{Independence}{ceroleofindependence} Let $X$ be a random variable, and let $\cG, \cH$ be $\sigma$-algebras. If $\cH$ is independent of $\sigma\left( \sigma(X), \cG \right)$, then \[ \bE[X | \sigma(\cG, \cH)] \overset{\text{a.s.}}{=} \bE[X | \cG]. \] In particular, if $X$ is independent of $\cG$, then \[ \bE[X | \cG] \overset{\text{a.s.}}{=} \bE[X]. \] \end{theorem} \begin{example}[Martingale property of the simple random walk] Suppose $X_1,X_2,\ldots$ are i.i.d.~with $\bP[X_i = 1] = \bP[X_i = -1] = \frac{1}{2}$. Let $S_n \coloneqq \sum_{i=1}^n X_i$ be the \vocab{simple random walk}. Let $\cF$ denote the $\sigma$-algebra on the product space. Define $\cF_n \coloneqq \sigma(X_1,\ldots)$. Intuitively, $\cF_n$ contains all the information gathered until time $n$. We have $\cF_1 \subset \cF_2 \subset \cF_3 \subset \ldots$ For $\bE[S_{n+1} | \cF_n]$ we obtain \begin{IEEEeqnarray*}{rCl} \bE[S_{n+1} | \cF_n] &\overset{\yaref{celinearity}}{=}& \bE[S_n | \cF_n] + \bE[X_{n+1} | \cF_n]\\ &\overset{\text{a.s.}}{=}& S_n + \bE[X_{n+1} | \cF_n]\\ &\overset{\yaref{ceroleofindependence}}{=}& S_{n} + \bE[X_n]\\ &=& S_n. \end{IEEEeqnarray*} \end{example}