\lecture{12}{2023-05-16}{Proof of the CLT} We now want to prove the \yaref{clt}. The plan is to do the following: \begin{enumerate}[1.] \item Identify the characteristic function of a standard normal \item Show that the characteristic functions of the $V_n$ converge pointwise to that of $\cN$. \item Apply \yaref{levycontinuity} \end{enumerate} First, we need to prove some properties of characteristic functions. \begin{lemma} \label{charfprops} For every real random variable $X$, we have \begin{enumerate}[(i)] \item $\phi_X(0) = 1$ and $|\phi_X(t)| \le 1$ for all $t \in \R$. \item $\phi_X$ is uniformly continuous. \item If $\bE[|X|^n] < \infty$ for any $n \in \N$, then $\phi_X$ i $n$-times continuously differentiable and $\bE[X^n] = (-\i)^n \phi_X^{(n)}(0)$. \item For independent random variables $X$ and $Y$, we have \[ \phi_{X + Y}(t) = \phi_X(t) \cdot \phi_Y(t). \] \end{enumerate} \end{lemma} \begin{refproof}{charfprops} \begin{enumerate}[(i)] \item $\phi_X(0) = \bE[e^{\i 0 X}] = \bE[1] = 1$. For $t \in \R$, we have $|\phi_X(t)| = |\bE[e^{\i t X}]| \overset{\yaref{jensen}}{\le} \bE[|e^{\i t X}|] = 1$. \item Let $t, h \in \R$. Then \begin{IEEEeqnarray*}{rCl} |\phi_X(t+h) - \phi_X(t)| &=& |\bE[e^{\i (t+h) X} - e^{\i t X}]|\\ &=& |\bE[e^{\i t X} (e^{\i h X} - 1)]|\\ &\overset{\yaref{jensen}}{\le}& \bE[|e^{\i t X}| \cdot |e^{\i h X} -1|]\\ &=& \bE[|e^{\i h X} - 1|] \text{\reflectbox{$\coloneqq$}} g(h)\\ \end{IEEEeqnarray*} Hence $\sup_{t \in \R} |\phi_X(t + h) - \phi_X(t) | \le g(h)$. We show that $\lim_{h \to 0} g(h) = 0$. For all $\omega \in \Omega$, we realize \[ \lim_{h \to 0} |e^{\i h X(\omega)}- 1| = 0. \] Thus $|e^{\i h X} - 1| \xrightarrow{h \to 0} 0$ almost surely. Since also for all $h \in \R$ we have $|e^{\i h X} - 1| \le 2$, it follow that $|e^{\i h X} - 1|$ is dominated for all $h \in \R$. Thus, we can apply the dominated convergence theorem % TODO REF and obtain \[ \lim_{h \to 0} g(h) = \lim_{h \to 0} \bE[|e^{\i h X} - 1|] = \bE[\lim_{h \to 0} |e^{\i h X} - 1|] = 0. \] It follows that \[ \lim_{n \to 0} \sup_{t \in \R} | \phi_X(t + h) - \phi_X(t)| = 0, \] which means that $\phi_X$ is uniformly continuous. \item \begin{claim} \label{charfprop:c1} For $y \in \R$, we have $|e^{\i y} - 1| \le |y|$. \end{claim} \begin{subproof} For $y \ge 0$, we have \begin{IEEEeqnarray*}{rCl} |e^{\i y} - 1| &=& |\int_0^y \cos(s) \dif s + \i \int_0^y \sin(s) \dif s|\\ &=& |\int_0^y e^{\i s} \dif s|\\ &\overset{\yaref{jensen}}{\le}& \int_0^y |e^{\i s}| ds = y. \end{IEEEeqnarray*} For $y < 0$, we have $|e^{\i y} - 1| = |e^{-\i y} - 1|$ and we can apply the above to $-y$. \end{subproof} First, we look at $n = 1$. Then $\bE[|X|] < \infty$. Consider \[ \frac{\phi_X(t + h) - \phi_X(t)}{h} = \bE\left[e^{\i t X} \frac{e^{\i h X} - 1}{h}\right]. \] We have $e^z = \sum_{n = 0}^\infty \frac{z^k}{n!}$. Hence \begin{IEEEeqnarray*}{rCl} \lim_{n \to \infty} e^{\i t X} \left( \frac{1 + \i h X + \frac{(\i h X)^2}{2} + o(h^2) - 1}{h} \right) &=& e^{\i t X} \i X \text{ almost surely.} \end{IEEEeqnarray*} For arbitrary $h \in \R$, we have \begin{IEEEeqnarray*}{rCl} |e^{\i t X} \frac{e^{\i h X}}{h}| &\le & \left| \frac{1}{h} \left( e^{\i h X} - 1 \right)\right|\\ &\overset{\yaref{charfprop:c1}}{\le}& \left|\frac{1}{h} \i h X\right| = |X|. \end{IEEEeqnarray*} Thus the dominated convergence theorem can be applied and we obtain \[ \lim_{h \to 0} \frac{\phi_X(t + h) - \phi_X(t)}{h} = \lim_{h \to 0} \bE\left[ e^{\i t X} \left( \frac{e^{\i h X}-1}{h} \right) \right] = \bE[e^{\i t X} \i X]. \] It follows that $\phi_X$ is differentiable and $\phi_X(t) = \bE[e^{\i t X} \i X]$. For $t = 0$ we get $\phi'_X(0) = \i \bE[X]$, i.e.~ -$\i \phi'_X(0) = \bE[X]$. Adapting the proof of (ii) gives that $\phi'_X(t)$ is continuous. Adapting the proof of (iii) gives the statement for arbitrary $n \in \N$. \item Easy exercise. \end{enumerate} \end{refproof} \begin{lemma}\label{lec12_2} % Lemma 2 For $X \sim \cN(0,1)$, we have $\phi_X(t) = e^{-\frac{t^2}{2}}$ for all $t \in \R$. \end{lemma} \begin{refproof}{lec12_2} We have \begin{IEEEeqnarray*}{rCl} \phi_X(t) &=& \frac{1}{\sqrt{2 \pi}} \int_{-\infty}^\infty e^{\i t x} e^{-\frac{x^2}{2}} \dif x\\ &=& \frac{1}{\sqrt{2 \pi}} \int_{-\infty}^\infty (\cos(tx) + \i \sin(tx)) e^{-\frac{x^2}{2}} \dif x\\ &=& \frac{1}{\sqrt{2 \pi}} \int_{-\infty}^\infty \cos(t x) e^{-\frac{x^2}{2}} \dif x,\\ \end{IEEEeqnarray*} since, as $x \mapsto \sin(tx)$ is odd and $x \mapsto e^{-\frac{x^2}{2}}$ is even, their product is odd, wich gives that the integral is $0$. \begin{IEEEeqnarray*}{rCl} \phi'_X(t) &=& \bE[\i X e^{\i t X}] \\ &=& \frac{1}{\sqrt{2 \pi}} \int_{-\infty}^\infty \i x \left( \cos(t x) + \i \sin(tx) \right) e^{-\frac{x^2}{2}} \dif x\\ &=& \frac{1}{\sqrt{2 \pi}} \left( \i \int_{-\infty}^\infty x \cos(tx) \right) e^{-\frac{x^2}{2}} \dif x\\ &=& \frac{1}{\sqrt{2 \pi}} \left(\underbrace{\i \int_{-\infty}^\infty x \cos(tx) e^{-\frac{x^2}{2}} \dif x}_{= 0} + \int_{-\infty}^\infty - \sin(t x) e^{-\frac{x^2}{2}} \dif x\right)\\ &=& \int_{-\infty}^\infty \underbrace{\sin(tx)}_{y(x)} \underbrace{ \frac{1}{\sqrt{2 \pi}}(-x) e^{\i\frac{x^2}{2}}}_{f'(x)} \dif x\\ &=& \underbrace{[ \sin(tx) \frac{1}{\sqrt{2 \pi} e^{-\frac{x^2}{2}}}]_{x=-\infty}^\infty}_{=0} - \int_{-\infty}^\infty t \cos(tx) \frac{1}{\sqrt{2 \pi}} e^{-\frac{x^2}{2}} \dif x\\ &=& -t \phi_X(t) \end{IEEEeqnarray*} Thus, for all $t \in \R$ \[ (\log(\phi_X(t)))' = \frac{\phi'_X(t)}{\phi_X(t)} = -t. \] Hence there exists $c \in \R$, such that \[ \log(\phi_X(t)) = -\frac{t^2}{2} + c. \] Since $\phi_X(0) = 1$, we obtain $c = 0$. Thus \[ \phi_X(t) = e^{-\frac{t^2}{2}}. \] \end{refproof} Now, we can finally prove the \yaref{clt}: \begin{refproof}{clt} Let $X_1,X_2,\ldots$ be i.i.d.~random variables with $\bE[X_1] = \mu_1$, $\Var(X_1) = \sigma^2$. Let \[ Y_i \coloneqq \frac{X_i - \mu}{\sigma} \] i.e.~we normalize to $\bE[Y_1] = 0$ and $\Var(Y_1) = 1$. We need to show that \[ V_n \coloneqq \frac{S_n - n \mu}{ \sigma \sqrt{n}} = \frac{Y_1+ \ldots + Y_n}{\sqrt{n}} \xrightarrow{\omega, n\to \infty} \cN(0,1) % TODO \] Let $t \in \R$. Then \begin{IEEEeqnarray*}{rCl} \phi_{V_n}(t) &=& \bE[e^{\i t Y_n}]\\ &=& \bE[e^{\i t \left( \frac{Y_1 + \ldots + Y_n}{\sqrt{n}} \right)}] \\ &=& \bE\left[e^{\i t \frac{Y_1}{\sqrt{n}}}\right] \cdot \ldots \cdot \bE\left[e^{\i t \frac{Y_n}{\sqrt{n}}}\right]\\ &=& \left( \phi\left(\frac{t}{\sqrt{n}}\right) \right)^n. \end{IEEEeqnarray*} where $\phi(t) \coloneqq \phi_{Y_1}(t)$. We have \begin{IEEEeqnarray*}{rCl} \phi(s) &=& \phi(0) + \phi'(0) s + \frac{\phi''(0)}{2} s^2 + o(s^2), \text{ as $s \to 0$}\\ &=& 1 - \underbrace{\i \bE[Y_1] s}_{=0} - \bE[Y_1^2] \frac{s^2}{2} + o(s^2), \text{ as $s \to 0$} \\ &=& 1 - \frac{s^2}{2} + o(s^2), \text{ as $s \to 0$} \end{IEEEeqnarray*} Setting $s \coloneqq \frac{t}{\sqrt{n}}$ we obtain \[ \phi\left(\frac{t}{ \sqrt{n}}\right) = 1 - \frac{t^2}{2n} + o\left( \frac{t^2}{n} \right) \text{ as $n \to \infty$} \] \[ \phi_{V_n}(t) = \left( \phi\left( \frac{t}{\sqrt{n}} \right) \right)^n = \left(1 - \frac{t^2}{2 n} + o\left( \frac{t^2}{n} \right)\right)^n \xrightarrow{n \to \infty} e^{-\frac{t^2}{2}}, \] where we have used the following: \begin{claim} For a sequence $a_n, n\in \N$ with $\lim_{n \to \infty} n a_n = \lambda$, it holds that $\lim_{n \to \infty} (1 + a_n)^n = e^{\lambda}$. \end{claim} We have shown that \[ \phi_n(t) \xrightarrow{n \to \infty} e^{-\frac{t^2}{2}} = \phi_{\cN(0,1)}(t). \] Using \yaref{levycontinuity}, we obtain the \yaref{clt}. \end{refproof} \begin{remark} If $X: \Omega \to \R^d$ with distribution $\nu$, we define \begin{IEEEeqnarray*}{rCl} \phi_X: \R^d &\longrightarrow & \C \\ t &\longmapsto & \bE[e^{\i \langle t , X\rangle}] \end{IEEEeqnarray*} where $\langle t, X\rangle \coloneqq \sum_{i = 1}^d t_i X_i$. \end{remark} Exercise: Find out, which properties also hold for $d > 1$. \todo{TODO}