\lecture{7}{}{Kolmogorov's three series theorem} \begin{goal} We want to drop our assumptions on finite mean or variance and say something about the behaviour of $ \sum_{n \ge 1} X_n$ when the $X_n$ are independent. \end{goal} \begin{theorem}[Kolmogorov's three-series theorem] % Theorem 3 \yalabel{Kolmogorov's Three-Series Theorem}{3 Series}{thm:kolmogorovthreeseries} \label{thm3} Let $X_n$ be a family of independent random variables. \begin{enumerate}[(a)] \item Suppose for some $C \ge 0$, the following three series of numbers converge: \begin{itemize} \item $\sum_{n \ge 1} \bP(|X_n| > C)$, \item $\sum_{n \ge 1} \underbrace{\int_{|X_n| \le C} X_n \dif\bP}_{\text{\vocab{truncated mean}}}$, \item $\sum_{n \ge 1} \underbrace{\int_{|X_n| \le C} X_n^2 \dif\bP - \left( \int_{|X_n| \le C} X_n \dif\bP \right)^2}_{\text{\vocab{truncated variance} }}$. \end{itemize} Then $\sum_{n \ge 1} X_n$ converges almost surely. \item Suppose $\sum_{n \ge 1} X_n$ converges almost surely. Then all three series above converge for every $C > 0$. \end{enumerate} \end{theorem} For the proof we'll need a slight generalization of \yaref{thm2}: \begin{theorem} %[Theorem 4] \label{thm4} Let $\{X_n\}_n$ be independent and \vocab{uniformly bounded} (i.e. $\exists M < \infty : \sup_n \sup_\omega |X_n(\omega)| \le M$). Then $\sum_{n \ge 1} X_n$ converges almost surely $\iff$ $\sum_{n \ge 1} \bE(X_n)$ and $\sum_{n \ge 1} \Var(X_n)$ converge. \end{theorem} \begin{refproof}{thm3} Assume, that we have already proved \yaref{thm4}. We prove part (a) first. Put $Y_n = X_n \cdot \One_{\{|X_n| \le C\}}$. Since the $X_n$ are independent, the $Y_n$ are independent as well. Furthermore, the $Y_n$ are uniformly bounded. By our assumption, the series $\sum_{n \ge 1} \int_{|X_n| \le C} X_n \dif\bP = \sum_{n \ge 1} \bE[Y_n]$ and $\sum_{n \ge 1} \int_{|X_n| \le C} X_n^2 \dif\bP - \left( \int_{|X_n| \le C} X_n \dif\bP \right)^2 = \sum_{n \ge 1} \Var(Y_n)$ converges. By \yaref{thm4} it follows that $\sum_{n \ge 1} Y_n < \infty$ almost surely. Let $A_n \coloneqq \{\omega : |X_n(\omega)| > C\}$. Since $\sum_{n \ge 1} \bP(A_n) < \infty$ by assumption, \yaref{thm:borelcantelli} yields $\bP[\text{infinitely many $A_n$ occur}] = 0$. For the proof of (b), suppose $\sum_{n\ge 1} X_n(\omega) < \infty$ for almost every $\omega$. Fix an arbitrary $C > 0$. Define \[ Y_n(\omega) \coloneqq \begin{cases} X_n(\omega) & \text{if} |X_n(\omega)| \le C,\\ C &\text{if } |X_n(\omega)| > C. \end{cases} \] Then the $Y_n$ are independent and $\sum_{n \ge 1} Y_n(\omega) < \infty$ almost surely and the $Y_n$ are uniformly bounded. By \yaref{thm4} $\sum_{n \ge 1} \bE[Y_n]$ and $\sum_{n \ge 1} \Var(Y_n)$ converge. Define \[ Z_n(\omega) \coloneqq \begin{cases} X_n(\omega) &\text{if } |X_n| \le C,\\ -C &\text{if } |X_n| > C. \end{cases} \] Then the $Z_n$ are independent, uniformly bounded and $\sum_{n \ge 1} Z_n(\omega) < \infty$ almost surely. By \yaref{thm4} we have $\sum_{n \ge 1} \bE(Z_n) < \infty$ and $\sum_{n \ge 1} \Var(Z_n) < \infty$. We have \begin{IEEEeqnarray*}{rCl} \bE(Y_n) &=& \int_{|X_n| \le C} X_n \dif\bP + C \bP(|X_n| \ge C),\\ \bE(Z_n) &=& \int_{|X_n| \le C} X_n \dif\bP - C \bP(|X_n| \ge C). \end{IEEEeqnarray*} Since $\bE(Y_n) + \bE(Z_n) = 2 \int_{|X_n| \le C} X_n \dif\bP$ the second series converges, and since $\bE(Y_n) - \bE(Z_n)$ converges, the first series converges. For the third series, we look at $\sum_{n \ge 1} \Var(Y_n)$ and $\sum_{n \ge 1} \Var(Z_n)$ to conclude that this series converges as well. \end{refproof} Recall \yaref{thm2}. We will see, that the converse of \yaref{thm2} is true if the $X_n$ are uniformly bounded. More formally: \begin{theorem}[Theorem 5] \label{thm5} Let $X_n$ be a series of independent variables with mean $0$, that are uniformly bounded. If $\sum_{n \ge 1} X_n < \infty$ almost surely, then $\sum_{n \ge 1} \Var(X_n) < \infty$. \end{theorem} \begin{refproof}{thm4} Assume we have proven \yaref{thm5}. ``$\impliedby$'' Assume $\{X_n\} $ are independent, uniformly bounded and $\sum_{n \ge 1} \bE(X_n) < \infty$ as well as $\sum_{n \ge 1} \Var(X_n) < \infty$. We need to show that $\sum_{n \ge 1} X_n < \infty$ a.s. Let $Y_n \coloneqq X_n - \bE(X_n)$. Then the $Y_n$ are independent, $\bE(Y_n) = 0$ and $\Var(Y_n) = \Var(X_n)$. By \yaref{thm2} $\sum_{n \ge 1} Y_n < \infty$ a.s. Thus $\sum_{n \ge 1} X_n < \infty$ a.s. ``$\implies$'' We assume that $\{X_n\}$ are independent, uniformly bounded and $\sum_{n \ge 1} X_n(\omega) < \infty$ a.s. We have to show that $\sum_{n \ge 1} \bE(X_n) < \infty$ and $\sum_{n \ge 1} \Var(X_n) < \infty$. Consider the product space $(\Omega, \cF, \bP) \otimes (\Omega, \cF, \bP)$. On this product space, we define $Y_n \left( (\omega, \omega') \right) \coloneqq X_n(\omega)$ and $Z_n \left( (\omega, \omega') \right) \coloneqq X_n(\omega')$. \begin{claim} For every fixed $n$, $Y_n$ and $Z_n$ are independent. \end{claim} \begin{subproof} This is obvious, but we will prove it carefully here. \begin{IEEEeqnarray*}{rCl} &&(\bP \otimes \bP) [Y_n \in (a,b) , Z_n \in (a',b') ]\\ &=& (\bP\otimes\bP) \left( (\omega, \omega') : X_n(\omega) \in (a,b) \land X_n(\omega') \in (a',b') \right)\\ &=& (\bP\otimes\bP)(A \times A') \text{where } A \coloneqq X_n^{-1}\left( (a,b)\right) \text{ and } A' \coloneqq X_n^{-1}\left( (a',b') \right)\\ &=& \bP(A)\bP(A') \end{IEEEeqnarray*} \end{subproof} Now $\bE[Y_n - Z_n] = 0$ (by definition) and $\Var(Y_n - Z_n) = 2\Var(X_n)$. Obviously, $(Y_n - Z_n)_{n \ge 1}$ is also uniformly bounded. \begin{claim} $\sum_{n \ge 1} (Y_n - Z_n) < \infty$ almost surely on $(\Omega \otimes \Omega, \cF \otimes\cF, \bP \otimes\bP)$. \end{claim} \begin{subproof} Suppose $\Omega_0 = \{\omega: \sum_{n \ge 1} X_n(\omega) < \infty\}$. Then $\bP(\Omega_0) = 1$. Thus $(\bP\otimes\bP)(\Omega_0 \otimes \Omega_0) = 1$. Furthermore $\sum_{n \ge 1} \left(Y_n(\omega, \omega') - Z_n(\omega, \omega') \right)= \sum_{n \ge 1} \left(X_n(\omega) - X_n(\omega')\right)$. Thus $\sum_{n \ge 1} \left( Y_n(\omega, \omega') - Z_n(\omega, \omega') \right) < \infty$ a.s.~on $\Omega_0\otimes\Omega_0$. \end{subproof} By \yaref{thm5}, $\sum_{n} \Var(X_n) = \frac{1}{2}\sum_{n \ge 1} \Var(Y_n - Z_n) < \infty$ a.s. Define $U_n \coloneqq X_n - \bE(X_n)$. Then $\bE(U_n) = 0$ and the $U_n$ are independent and uniformly bounded. We have $\sum_{n} \Var(U_n) = \sum_{n} \Var(X_n) < \infty$. Thus $\sum_{n} U_n$ converges a.s.~by \yaref{thm2}. Since by assumption $\sum_{n} X_n < \infty$ a.s., it follows that $\sum_{n} \bE(X_n) < \infty$. \end{refproof} \begin{remark} In the proof of \yaref{thm4} ``$\impliedby$'' is just a trivial application of \yaref{thm2} and uniform boundedness was not used. The idea of `` $\implies$ '' will lead to coupling. % TODO ? \end{remark} A proof of \yaref{thm5} can be found in the notes.\notes \begin{example}[Application of \yaref{thm4}] The series $\sum_{n} \frac{1}{n^{\frac{1}{2} + \epsilon}}$ does not converge for $\epsilon < \frac{1}{2}$. However \[ \sum_{n} X_n \frac{1}{n^{\frac{1}{2} + \epsilon}} \] where $\bP[X_n = 1] = \bP[X_n = -1] = \frac{1}{2}$ converges almost surely for all $\epsilon > 0$. And \[ \sum_{n} X_n \frac{1}{n^{\frac{1}{2} - \epsilon}} \] does not converge. \end{example}