\lecture{5}{2023-04-21}{Laws of large numbers} \subsection{The Laws of Large Numbers} We want to show laws of large numbers: The LHS is random and represents ``sane'' averaging. The RHS is constant, which we can explicitly compute from the distribution of the RHS. We fix a probability space $(\Omega, \cF, \bP)$ once and for all. \begin{theorem} \label{lln} % TODO - yaref Let $X_1, X_2,\ldots$ be i.i.d.~random variables on $(\R, \cB(\R))$ and $m = \bE[X_i] < \infty$ and $\sigma^{2} = \Var(X_i) = \bE[ (X_i - \bE(X_i))^2] = \bE[X_i^2] - \bE[X_i]^2 < \infty$. Then \begin{enumerate}[(a)] \item $\frac{X_1 + \ldots + X_n}{n} \xrightarrow{n \to \infty} m$ in probability (\vocab{weak law of large numbers}, WLLN), \item $\frac{X_1 + \ldots + X_n}{n} \xrightarrow{n \to \infty} m$ almost surely (\vocab{strong law of large numbers}, SLLN). \end{enumerate} \end{theorem} \begin{refproof}{lln} \begin{enumerate}[(a)] \item Given $\epsilon > 0$, we need to show that \[ \bP\left[ \left| \frac{X_1 + \ldots + X_n}{n} - m\right| > \epsilon \right] \xrightarrow{n \to 0} 0. \] Let $S_n \coloneqq X_1 + \ldots + X_n$. Then $\bE[S_n] = \bE[X_1] + \ldots + \bE[X_n] = nm$. We have \begin{IEEEeqnarray*}{rCl} \bP\left[ \left| \frac{X_1 + \ldots + X_n}{n} - m\right| > \epsilon\right] &=& \bP\left[\left|\frac{S_n}{n}-m\right| > \epsilon\right]\\ &\overset{\yaref{thm:chebyshev}}{\le }& \frac{\Var\left( \frac{S_n}{n} \right) }{\epsilon^2} = \frac{1}{n} \frac{\Var(X_1)}{\epsilon^2} \xrightarrow{n \to \infty} 0 \end{IEEEeqnarray*} since \[\Var\left(\frac{S_n}{n}\right) = \frac{1}{n^2} \Var\left(S_n\right) = \frac{1}{n^2} n \Var(X_i).\] \end{enumerate} \end{refproof} For the proof of (b) we need the following general result: \begin{theorem} \label{thm2} Let $X_1, X_2, \ldots$ be independent (but not necessarily identically distributed) random variables with $\bE[X_i] = 0$ for all $i$ and \[\sum_{i=1}^n \Var(X_i) < \infty.\] Then $\sum_{n \ge 1} X_n$ converges almost surely. \end{theorem} We'll prove this later\todo{Move proof} \begin{question} Does the converse hold? I.e.~does $\sum_{n \ge 1} X_n < \infty$ a.s.~ then $\sum_{n \ge 1} \Var(X_n) < \infty$. \end{question} This does not hold. Consider the following: \begin{example} Let $X_1,X_2,\ldots$ be independent random variables, where $X_n$ has distribution $\frac{1}{n^2} \delta_n + \frac{1}{n^2} \delta_{-n} + (1-\frac{2}{n^2}) \delta_0$. We have $\bP[X_n \neq 0] = \frac{2}{n^2}$. Since this is summable, \yaref{thm:borelcantelli} yields \[ \bP[X_{n} \neq 0 \text{ for infinitely many $n$}] = 0. \] In particular, $X_n$ is summable almost surely. However $\Var(X_n) = 2$ is not summable. \end{example}