boundedness

This commit is contained in:
Josia Pietsch 2023-07-18 22:33:10 +02:00
parent 9310eae807
commit fae60388ab
Signed by: josia
GPG Key ID: E70B571D66986A2D
7 changed files with 75 additions and 21 deletions

View File

@ -1,21 +1,66 @@
Important stuff not done in the lecture.
\section{Additional Material}
Moments:
% Important stuff not done in the lecture.
$\bE[X^k]$
\subsection{Notions of boundedness}
The following is just a short overview of all the notions of
boundedness we used in the lecture.
\begin{lemma}
Let $X, Y : \Omega \to [a,b]$
If $\bE[X^k] = \bE[Y^k]$,
for every $k \in \N_0$
then $X = Y$.
\end{lemma}
\begin{proof}
We have $\bE[p(X)] = \bE[p(Y)]$ for
every polynomial $p$.
Approximate $e^{\i t X}$
with polynomials and use Fourier transforms.
\end{proof}
\begin{definition}+[Boundedness]
Let $\cX$ be a set of random variables.
We say that $\cX$ is
\begin{itemize}
\item \vocab{uniformly bounded} iff
\[\sup_{X \in \cX} \sup_{\omega \in \Omega} |X(\omega)| < \infty,\]
\item \vocab{dominated by $f \in L^p$} for $p \ge 1$ iff
\[
\forall X \in \cX .~ |X| \le f,
\]
\item \vocab{bounded in $L^p$} for $p \ge 1$ iff
\[
\sup_{X \in \cX} \|X\|_{L^p} < \infty,
\]
\item \vocab{uniformly integrable} iff
\[
\forall \epsilon > 0 .~\exists K .~ \forall X \in \cX.~
\bE[|X| \One_{|X| > K}] < \epsilon.
\]
\end{itemize}
\end{definition}
\begin{fact}+
Let $\cX$ be a set of random variables.
Let $1 < p \le q < \infty$
Then the following implications hold:
\begin{figure}[H]
\centering
\begin{tikzpicture}
\node at (0,2.5) (ub) {$\cX$ is uniformly bounded};
\node at (-2.5,1.5) (dq) {$\cX$ is dominated by $f \in L^q$};
\node at (-2.5,0.5) (dp) {$\cX$ is dominated by $f \in L^p$};
\node at (2.5,1.0) (bq) {$\cX$ is bounded in $L^q$};
\node at (2.5,0) (bp) {$\cX$ is bounded in $L^p$};
\node at (-2.5,-0.5) (d1) {$\cX$ is dominated by $f \in L^1$};
\node at (0,-1.5) (ui) {$\cX$ is uniformly integrable};
\node at (2.5,-2.5) (b1) {$\cX$ is bounded in $L^1$};
\draw[double equal sign distance, -implies] (ub) -- (dq);
% \draw[double equal sign distance, -implies] (ub) -- (bq);
\draw[double equal sign distance, -implies] (bq) -- (bp);
\draw[double equal sign distance, -implies] (dq) -- (dp);
\draw[double equal sign distance, -implies] (dq) -- (bq);
\draw[double equal sign distance, -implies] (dp) -- (bp);
\draw[double equal sign distance, -implies] (bp) -- (ui);
\draw[double equal sign distance, -implies] (dp) -- (d1);
\draw[double equal sign distance, -implies] (d1) -- (ui);
\draw[double equal sign distance, -implies] (ui) -- (b1);
\end{tikzpicture}
\end{figure}
\end{fact}
Laplace transforms
\subsection{Laplace Transforms}
\todo{Write something about Laplace Transforms}

View File

@ -22,7 +22,11 @@ First, let us recall some basic definitions:
\end{itemize}
\end{itemize}
\end{definition}
\begin{definition}+
Let $X$ be a random variable and $k \in \N$.
Then the $k$-th \vocab{moment} of $X$ is defined as
$\bE[X^k]$.
\end{definition}
\begin{definition}
A \vocab{random variable} $X : (\Omega, \cF) \to (\R, \cB(\R))$
@ -63,6 +67,7 @@ The converse to this fact is also true:
See theorem 2.4.3 in Stochastik.
\end{proof}
\begin{example}[Some important probability distribution functions]\hfill
\begin{enumerate}[(1)]
\item \vocab{Uniform distribution} on $[0,1]$:

View File

@ -161,7 +161,7 @@ More formally:
The idea of `` $\implies$ '' will lead to coupling. % TODO ?
\end{remark}
A proof of \autoref{thm5} can be found in the notes.\notes
\begin{example}[Application of \autoref{thm5}]
\begin{example}[Application of \autoref{thm4}]
The series $\sum_{n} \frac{1}{n^{\frac{1}{2} + \epsilon}}$
does not converge for $\epsilon < \frac{1}{2}$.
However

View File

@ -183,7 +183,7 @@ However, some subsets can be easily described, e.g.
Since $\phi$ is Lipschitz,
$ X_n \xrightarrow{\bP} X \implies \phi(X_n) \xrightarrow{\bP} \phi(X)$.
By the bounded convergence theorem % TODO
By the bounded convergence theorem, \autoref{thm:boundedconvergence},
$|\phi(X_n)| \le k \implies \int | \phi(X_n) - \phi(X)| \dif \bP \to 0$.

View File

@ -122,6 +122,7 @@ we need the following theorem, which we won't prove here:
\subsection{Stopping Times}
\begin{definition}[Stopping time]
\label{def:stopping-time}
A random variable $T: \Omega \to \N_0 \cup \{\infty\}$ on a filtered probability space $(\Omega, \cF, \{\cF_n\}_n, \bP)$ is called a \vocab{stopping time},
if
\[

View File

@ -151,9 +151,10 @@ In this lecture we recall the most important point from the lecture.
\item This is an important proof.
\end{itemize}
\item Uniform integrability % TODO
\item What are stopping times?
\item What are stopping times? \autoref{def:stopping-time}
\item (Non-)examples of stopping times
\item \textbf{Optional stopping theorem} - be really comfortable with this.
\autoref{optionalstopping}
\end{itemize}

View File

@ -17,7 +17,7 @@
\tableofcontents
\cleardoublepage
%\mainmatter
%\mainatter
\input{inputs/intro.tex}
@ -55,6 +55,8 @@
\section{Appendix}
\input{inputs/a_0_distributions.tex}
\end{landscape}
\pagebreak
\input{inputs/a_2_additional_stuff.tex}
\input{inputs/lecture_23.tex}
\cleardoublepage