diff --git a/inputs/lecture_09.tex b/inputs/lecture_09.tex index e27f18f..e6972cf 100644 --- a/inputs/lecture_09.tex +++ b/inputs/lecture_09.tex @@ -141,7 +141,7 @@ We have Then \begin{itemize} \item $\phi_{a X + b}(t) = e^{\i t b} \phi_X(\frac{t}{a})$, - \item $\phi_{X + Y}(t) = \phi_X(t) + \phi_Y(t)$. + \item $\phi_{X + Y}(t) = \phi_X(t) \cdot \phi_Y(t)$. \end{itemize} \end{fact} \begin{proof} diff --git a/inputs/prerequisites.tex b/inputs/prerequisites.tex index cdad15c..51994a0 100644 --- a/inputs/prerequisites.tex +++ b/inputs/prerequisites.tex @@ -48,6 +48,7 @@ from the lecture on stochastic. \pagebreak \begin{theorem}+ + % \footnote{see exercise 3.4} \label{thm:convergenceimplications} \vspace{10pt} Let $X$ be a random variable and $X_n, n \in \N$ a sequence of random variables. @@ -247,7 +248,20 @@ from the lecture on stochastic. We have $[-k,k] \uparrow \R$, hence $\mu([-k,k]) \uparrow \mu(\R)$. \end{proof} -\begin{theorem}[Riemann-Lebesgue] +\begin{theorem}+[Change of variables formula] + Let $X$ be a random variable with a continuous density $f$, + and let $g: \R \to \R$ be continuous such that + $g(X)$ is integrable. + Then + \[ + \bE[g(X)] = \int g \circ X \dif \bP + = \int_{-\infty}^\infty g(y) f(y) \lambda(\dif y) + = \int_{-\infty}^\infty g(y) f(y) \dif y. + \] +\end{theorem} + +\begin{theorem}+[Riemann-Lebesgue] + %\footnote{see exercise 3.3} \label{riemann-lebesgue} Let $f: \R \to \R$ be integrable. Then @@ -256,7 +270,27 @@ from the lecture on stochastic. \] \end{theorem} - +\begin{theorem}+[Fubini-Tonelli] + %\footnote{exercise sheet 1} + Let $(\Omega_{i}, \cF_i, \bP_i), i \in \{0,1\}$ + be probability spaces and $\Omega \coloneqq \Omega_0 \otimes \Omega_1$, + $\cF \coloneqq \cF_1 \otimes\cF_2$, + $\bP \coloneqq \bP_0 \otimes \bP_1$. + Let $f \ge 0$ be $(\Omega, \cF)$-measurable, + then + \[ + \Omega_0 \ni x \mapsto \int_{\Omega_{2}} f(x,y) \bP_2(\dif y) + \] + and + \[ + \Omega_1 \ni y \mapsto \int_{\Omega_1} f(x,y) \bP_1(\dif x) + \] + are measurable, and + \[ + \int f \dif \bP = \int_{\Omega_1} \int_{\Omega_2} f(x,y) \bP_2(\dif y) \bP_1(\dif x)(\dif x) + = \int_{\Omega_2} \int_{\Omega_1} f(x,y) \bP_1(\dif x) \bP_2(\dif y). + \] +\end{theorem} \subsection{Inequalities} This is taken from section 6.1 of the notes on Stochastik.