lecture 4

This commit is contained in:
Josia Pietsch 2023-07-07 17:11:59 +02:00
parent 0a5131f313
commit f543fd1de6
Signed by: josia
GPG key ID: E70B571D66986A2D
3 changed files with 256 additions and 29 deletions

View file

@ -1,38 +1,46 @@
\lecture{3}{}{} \lecture{3}{2023-04-13}{}
\todo{My battery died during this lecture, so this still needs to be finished}
\begin{notation} \begin{notation}
Let $\cB_n$ denote $\cB(\R^n)$. Let $\cB_n$ denote $\cB(\R^n)$.
\end{notation} \end{notation}
\begin{goal} \begin{goal}
Suppose we have a probability measure $\mu_n$ on $(\R^n, \cB(\R^n))$ Suppose we have a probability measure $\mu_n$ on $(\R^n, \cB(\R^n))$
for each $n$. for each $n \in \N$.
We want to show that there exists a unique probability measure $\bP^{\otimes}$ We want to show that there exists a unique probability measure
on $(\R^\infty, \cB_\infty)$ (where $\cB_{\infty}$ still needs to be defined), $\bP^{\otimes}$ on $(\R^\infty, \cB_\infty)$
such that $\bP^{\otimes}\left( \prod_{n \in \N} B_n \right) = \prod_{n \in \N} \mu_n(B_n)$ (where the $\sigma$-algebra $\cB_{\infty}$ still needs to be defined),
such that
\[
\bP^{\otimes}\left( \prod_{n \in \N} B_n \right)
= \prod_{n \in \N} \mu_n(B_n)
\]
for all $\{B_n\}_{n \in \N}$, $B_n \in \cB_1$. for all $\{B_n\}_{n \in \N}$, $B_n \in \cB_1$.
\end{goal} \end{goal}
% $\bP_n = \mu_1 \otimes \ldots \otimes \mu_n$.
\begin{remark} \begin{remark}
$\prod_{n \in \N} \mu_n(B_n)$ converges, since $0 \le \mu_n(B_n) \le 1$ $\prod_{n \in \N} \mu_n(B_n)$ converges, since $0 \le \mu_n(B_n) \le 1$
for all $n$. for all $n$.
\end{remark} \end{remark}
First we need to define $\cB_{\infty}$. First we need to define $\cB_{\infty}$.
This $\sigma$-algebra must contain all sets $\prod_{n \in \N} B_n$ This $\sigma$-algebra must contain all ``boxes'' $\prod_{n \in \N} B_n$
for all $B_n \in \cB_1$. We simply define $\cB_{\infty}$ to be the for $B_i \in \cB_1$.
$\sigma$-algebra We simply take the smallest $\sigma$-algebra with this property:
Let \[\cB_\infty \coloneqq \sigma \left( \left\{\prod_{n \in \N} B_n : B_n \in \cB(\R)\right\} \right).\] \begin{definition}
\[
\cB_\infty \coloneqq \sigma \left( \left\{\prod_{n \in \N} B_n :
\forall n .~ B_n \in \cB(\R)\right\} \right).
\]
\end{definition}
\begin{question} \begin{question}
What is there in $\cB_\infty$? What is there in $\cB_\infty$?
Can we identify sets in $\cB_\infty$ for which we can define the product measure Can we identify sets in $\cB_\infty$
easily? for which we can define the desired product measure easily?
\end{question} \end{question}
Let $\cF_n \coloneqq \{ C \times \R^{\infty} | C \in \cB_n\}$. Let $\cF_n \coloneqq \{ C \times \R^{\infty} | C \in \cB_n\}$.
It is easy to see that $\cF_n \subseteq \cF_{n+1}$ It is easy to see that $\cF_n \subseteq \cF_{n+1}$
and using that $\cB_n$ is a $\sigma$-algebra, we can show that $\cF_n$ and using that $\cB_n$ is a $\sigma$-algebra, we can show that $\cF_n$
is also a $\sigma$-algebra. is also a $\sigma$-algebra.
Now, for any $C \subseteq \R^n$ let $C^\ast \coloneqq C \times \R^{\infty}$. Now, for any $C \subseteq \R^n$ let $C^\ast \coloneqq C \times \R^{\infty}$.
Note that $C \in \cB_n \implies C^\ast \in \cF_n$.
Thus $\cF_n = \{C^\ast : C \in \cB_n\}$. Thus $\cF_n = \{C^\ast : C \in \cB_n\}$.
Define $\lambda_n : \cF_n : \to [0,1]$ by $\lambda_n(C^\ast) \coloneqq (\mu_1 \otimes \ldots \otimes \mu_n)(C)$. Define $\lambda_n : \cF_n : \to [0,1]$ by $\lambda_n(C^\ast) \coloneqq (\mu_1 \otimes \ldots \otimes \mu_n)(C)$.
It is easy to see that $\lambda_{n+1} \defon{\cF_n} = \lambda_n$ (\vocab{consistency}). It is easy to see that $\lambda_{n+1} \defon{\cF_n} = \lambda_n$ (\vocab{consistency}).
@ -49,6 +57,9 @@ Recall the following theorem from measure theory:
Then $\bP$ extends uniquely to a probability measure on $(\Omega, \cF)$, Then $\bP$ extends uniquely to a probability measure on $(\Omega, \cF)$,
where $\cF = \sigma(\cA)$. where $\cF = \sigma(\cA)$.
\end{theorem} \end{theorem}
\begin{proof}
See theorem 2.3.3 in Stochastik.
\end{proof}
Define $\cF = \bigcup_{n \in \N} \cF_n$. Then $\cF$ is an algebra. Define $\cF = \bigcup_{n \in \N} \cF_n$. Then $\cF$ is an algebra.
We'll show that if we define $\lambda: \cF \to [0,1]$ with We'll show that if we define $\lambda: \cF \to [0,1]$ with
@ -63,7 +74,7 @@ We want to prove:
\end{claim} \end{claim}
\begin{claim} \begin{claim}
\label{claim:lambdacountadd} \label{claim:lambdacountadd}
$\lambda$ as defined above is countably additive on $\cF$. $\lambda$ is countably additive on $\cF$.
\end{claim} \end{claim}
\begin{refproof}{claim:sF=Binfty} \begin{refproof}{claim:sF=Binfty}
@ -86,14 +97,17 @@ We want to prove:
\begin{itemize} \begin{itemize}
\item $\cB_n$ is a $\sigma$-algebra \item $\cB_n$ is a $\sigma$-algebra
\item $\cB_\infty$ is a $\sigma$-algebra, \item $\cB_\infty$ is a $\sigma$-algebra,
\item $\phi^\ast \phi$, $(\R^n \setminus Q)^\ast = \R^{\infty} \setminus Q^\ast$, $\bigcup_{i \in I} Q_i^\ast = (\bigcup_{i \in I} Q_i)^\ast$. \item $\emptyset^\ast = \emptyset$, $(\R^n \setminus Q)^\ast = \R^{\infty} \setminus Q^\ast$, $\bigcup_{i \in I} Q_i^\ast = (\bigcup_{i \in I} Q_i)^\ast$.
\end{itemize} \end{itemize}
Thus $\cC \subseteq \cB_n$ is a $\sigma$-algebra and contains all rectangles, hence $\cC = \cB_n$. Since $\cC \subseteq \cB_n$ is a $\sigma$-algebra
and contains all rectangles,
it holds that $\cC = \cB_n$.
Hence $\cF_n \subseteq \cB_\infty$ for all $n$, Hence $\cF_n \subseteq \cB_\infty$ for all $n$,
thus $\cF \subseteq \cB_\infty$. Since $\cB_\infty$ is a $\sigma$-algebra, thus $\cF \subseteq \cB_\infty$. Since $\cB_\infty$ is a $\sigma$-algebra,
$\sigma(\cF) \subseteq \cB_\infty$. $\sigma(\cF) \subseteq \cB_\infty$.
\end{refproof} \end{refproof}
We are going to use the following For the proof of \autoref{claim:lambdacountadd},
we are going to use the following:
\begin{fact} \begin{fact}
\label{fact:finaddtocountadd} \label{fact:finaddtocountadd}
Suppose $\cA$ is an algebra on $\Omega \neq \emptyset$, Suppose $\cA$ is an algebra on $\Omega \neq \emptyset$,
@ -104,7 +118,24 @@ We are going to use the following
$\bP(B_n) \to 0$. Then $\bP$ must be countably additive. $\bP(B_n) \to 0$. Then $\bP$ must be countably additive.
\end{fact} \end{fact}
\begin{proof} \begin{proof}
Exercise. % TODO Let $(A_n)_{n\in \N}$ be a sequence of disjoint,
measurable sets with
$A \coloneqq \bigcup_{n} A_n \in \cA$.
Let $A'_n \coloneqq A \setminus \bigcup_{i=1}^n A_i$.
Then we have $ \bP[A] = \bP[A'_n] + \sum_{i=1}^{n} \bP[A_i]$ for all $n$.
Thus
\[
\bP[A] - \lim_{n \to \infty} \bP[A'_n]
= \lim_{n \to \infty} \sum_{i=1}^{n} \bP[A_i].
\]
Since $\bigcap_{n \in \N} A'_n = \emptyset$, we have
$\lim_{n \to \infty} \bP[A'_n] = 0$,
hence
\[
\bP\left[\bigcup_{i \in \N} A_i\right]
= \bP[A]
= \sum_{i \in \N} \bP[A_i].
\]
\end{proof} \end{proof}
\begin{refproof}{claim:lambdacountadd} \begin{refproof}{claim:lambdacountadd}
Let us prove that $\lambda$ is finitely additive. Let us prove that $\lambda$ is finitely additive.
@ -114,13 +145,13 @@ We are going to use the following
Then pick some $n$ such that $A_1, A_2 \in \cF_n$. Then pick some $n$ such that $A_1, A_2 \in \cF_n$.
Take $C_1, C_2 \in \cB_n$ such that $C_1^\ast = A_1$ Take $C_1, C_2 \in \cB_n$ such that $C_1^\ast = A_1$
and $C_2^\ast = A_2$. and $C_2^\ast = A_2$.
Then $C_1$ and $C_2$ are disjoint and $A_1 \cup A_2 = (C_1 \cup C_2)^\ast$. Then $C_1$ and $C_2$ are disjoint
$\lambda(A_1 \cup A_2) = \lambda_n(A_1 \cup A_2) = (\mu_1 \otimes \ldots \otimes \mu_n)(C_1 \cup C_2) = \lambda_n(C_1) + \lambda_n(C_2)$ and $A_1 \cup A_2 = (C_1 \cup C_2)^\ast$.
Hence
\[
\lambda(A_1 \cup A_2) = \lambda_n(A_1 \cup A_2)
= (\mu_1 \otimes \ldots \otimes \mu_n)(C_1 \cup C_2)
= \lambda_n(C_1) + \lambda_n(C_2)
\]
by the definition of the finite product measure. by the definition of the finite product measure.
In order to use \autoref{fact:finaddtocountadd},
we need to show that for any sequence $B_n \in \cF$ with $B_n \xrightarrow{n\to \infty} \emptyset$
we have $\lambda(B_n) \xrightarrow{n \to \infty} 0$.
\todo{Finish this}
%TODO
\end{refproof} \end{refproof}

View file

@ -1,2 +1,196 @@
\lecture{4}{}{} \lecture{4}{}{End of proof of Kolmogorov's consistency theorem}
\todo{Lecture 4 missing}
To finish the proof of \autoref{claim:lambdacountadd},
we need the following:
\begin{fact}
\label{lec4fact1}
Suppose $\{x_k^{(n)}\}_{n \in \N}$
is a bounded sequence of real numbers for each $k \in \N$.
Then there exists a strictly increasing sequence
of natural number $\{n_i\}_{i\in \N}$
such that for all $k \in \N$
the series $\{x_k^{(n_i)}\}_{i \in \N}$
converges.
\end{fact}
\begin{proof}
We'll use a diagonalization argument.
For $S \subseteq \N$ infinite,
we say that a sequence of real number, $(x_n)_{n \in \N}$,
\vocab[Convergence along a subset]{converges along $S$},
if
\[
\lim_{\substack{n \to \infty\\n \in S}} x_n
\]
exists.
Let $S_1$ be such that $\{x_1^{(n)}\}_{n \in \N}$
converges along $S_1$. Such an $S_1$ exists by
Bolzano-Weierstraß.
We proceed recursively.
Suppose we have already chosen $S_1,\ldots, S_{k-1}$.
Consider $\{x_k^{(n)}\}_{n \in S_{k-1}}$.
By Bolzano-Weierstraß, there exists $S_k \subseteq S_{k-1}$
such that $\{x_{k}^{(n)}\}_{n \in S_{k-1}}$
converges along $S_k$.
For an infinite subset $T \subseteq \N$ and $\nu \in \N$
let $\# \nu(T)$ denote the $\nu$-th smallest
element of $T$.
Let
\[
S \coloneqq \{\#\nu(S_k) : k \in \N\}.
\]
Since $S_{k+1} \subseteq S_k$,
we have $\#(k+1)(S_{k+1}) > \#k(S_{k+1}) \ge \# k (S_k)$.
Hence $S$ is infinite.
Each $\{x_k^{(n)}\}_{n \in \N}$
converges along $S$,
since all but finitely many elements of $S$
belong to $S_k$.
\end{proof}
\begin{lemma}
\label{lem:intersectioncompactsets}
Let $\{K_n\}_{n \in \N}$ be a sequence of compact sets
$K_n \subseteq \R^{l_n}$ for some $l_n$.
Suppose for all $n$
\[
\bigcap_{i=1}^n K_i^\ast \neq \emptyset.
\]
Then
\[
\bigcap_{i\in \N} K_i^\ast \neq \emptyset.
\]
\end{lemma}
\begin{refproof}{lem:intersectioncompactsets}
We know from analysis
that if $\{K_n\}_{n \in \N}$ is a sequence of compact sets
such that the intersection of finitely many of them is non-empty,
then
\[
\bigcap_{n \in \N} K_n \neq \emptyset.
\]
Here, different $K_n$ may have different dimensions $l_n$,
but we can view them as subsets of $\R^\infty$
by applying ${}^\ast$.
For each $n$, choose $x^{(n)} \in \bigcap_{i =1}^n K_i^\ast$.
We can assume $x ^{(n)}_k = 0$ for $k > \max \{l_1,\ldots, l_n\}$.
For all $k \in \N$ we will show that $\{x_k^{(n)}\}$
is bounded.
\begin{itemize}
\item Case 1: Suppose every $l_n \le k$.
Then $\{x_k^{(n)}\}_n$ only contains zeros.
\item Case 2:
Suppose some $l_{n_0} \ge k$.
Let $Z$ be the projection of $K_{n_0} \subseteq \R^{l_{n_0}}$
onto its $k$-th component.
$Z$ is a compact subset of $\R$.
Hence it is bounded.
For all $n \ge n_0$, we have $x^{(n)} \in K_{n_0}^\ast$
and $x_k^{(n)} \in Z$,
so $\{x_k^{(n)}\}_n$ is bounded.
\end{itemize}
By \autoref{lec4fact1},
there is an infinite set $S \subseteq \N$,
such that $\{x_k^{(n)}\}_{n \in S}$
converges for every $k$.
Let $x_k \coloneqq \lim_{\substack{n \to \infty\\n \in S}} x_k^{(n)}$.
Now let $x = (x_1,x_2,\ldots)\in \R^{\infty}$.
\begin{claim}
$x \in \bigcap_{i \in \N} K_i^\ast$.
\end{claim}
\begin{subproof}
Consider $x^{(n)}$ for $n > i$ and $n \in S$.
Then $(x^{(n)}_1, \ldots, x^{(n)}_{l_i}) \in K_i$
and
\[
\lim_{\substack{n \to \infty\\n \in S}}
(x^{(n)}_1, \ldots, x^{(n)}_{l_i})
= (x_1,\ldots, x_{l_i}).
\]
Since $K_i$ is compact,
it follows that $x \in K_i^\ast$.
\end{subproof}
\end{refproof}
\begin{refproof}{claim:lambdacountadd}
In order to apply \autoref{fact:finaddtocountadd},
we need the following:
\begin{claim}
For any sequence $B_n \in \cF$
with $B_n \xrightarrow{n\to \infty} \emptyset$
we have $\lambda(B_n) \xrightarrow{n \to \infty} 0$.
\end{claim}
\begin{subproof}
Suppose that $B_1^\ast \supseteq B_2^\ast \supseteq \ldots$
is a decreasing sequence such that
$\lim_{n \to \infty} \lambda(B_n^\ast) = \epsilon > 0$.
For each $n$,
let $l_n$ be such that $B_n \in \cB_{l_n}$.
By regularity of Borel probability measures, %
% TODO see the proof of Caratheodory extension theorem
given $\epsilon > 0$,
there exists a compact set $L_n \subseteq B_n$,
such that
\[
(\mu_1 \otimes \ldots \otimes\mu_n)(B_n \setminus L_n)
< \frac{\epsilon}{2^{n+1}}
\]
We have
\[
B_n^\ast \setminus \bigcap_{k=1}^n L_k^\ast %
\subseteq \bigcup_{k=1}^n \left( B_k^\ast \setminus L_k^\ast \right).
\]
Hence
\begin{IEEEeqnarray*}{rCl}
\lambda\left( B_n^\ast \setminus \bigcap_{k=1}^n L_k^\ast \right)
&\le & \lambda\left(\bigcup_{k=1}^n %
B_k^\ast \setminus L_k^\ast \right) \\
&\le & \sum_{k=1}^{n} \lambda(B_k^\ast \setminus L_k^\ast)\\
&\le& \sum_{k=1}^{n} \frac{\epsilon}{2^{k+1}}\\
&\le & \frac{\epsilon}{2}.
\end{IEEEeqnarray*}
By our assumption,
$\lambda(B_n^\ast) \downarrow \epsilon > 0$.
Hence $\lambda(B_n^\ast) \ge \epsilon$ for all $n$.
Thus
\[
\lambda\left( \bigcap_{k=1}^n L_k^\ast \right) %
\ge \epsilon - \frac{\epsilon}{2} = \frac{\epsilon}{2}.
\]
In particular, for all $n$
\[
\bigcap_{k=1}^n L_k^\ast \neq \emptyset.
\]
By \autoref{lem:intersectioncompactsets},
it follows that
\[
\bigcap_{k \in \N} L_k^\ast \neq \emptyset.
\]
Since
\[
\bigcap_{k \in \N} B_k^\ast \supseteq \bigcap_{k \in \N} L_k^\ast,
\]
we have $\bigcap_{k \in \N} B_k^\ast \neq \emptyset$.
\end{subproof}
\end{refproof}
The measure $\lambda$ is as desired:
For all $n \in \N$ take some $B_n \in \cB_1$
and let $C_n \coloneqq \prod_{i=1}^n B_i$.
Then $C_n^\ast \downarrow \prod_{i=1}^{\infty} B_i$,
hence
\begin{IEEEeqnarray*}{rCl}
\lambda\left( \prod_{i=1}^{\infty} B_i \right)
&\overset{\text{continuity}}{=}& \lim_{N \to \infty} \lambda(C_N^\ast)\\
&=& \lim_{N \to \infty} \lambda_N(C_N^\ast)\\
&=& \lim_{N \to \infty} \prod_{n=1}^{N} \mu_n(B_n)\\
&=& \prod_{n \in \N} \mu_n(B_n).
\end{IEEEeqnarray*}
For the definition of $\lambda$
as well as the proof of \autoref{claim:lambdacountadd}
we have only used that $(\lambda_n)_{n \in \N}$
is a consistent family.
Hence we have in fact shown \autoref{thm:kolmogorovconsistency}.

View file

@ -28,6 +28,7 @@
\input{inputs/lecture_02.tex} \input{inputs/lecture_02.tex}
\input{inputs/lecture_03.tex} \input{inputs/lecture_03.tex}
\input{inputs/lecture_04.tex}
\input{inputs/lecture_05.tex} \input{inputs/lecture_05.tex}
\input{inputs/lecture_06.tex} \input{inputs/lecture_06.tex}
\input{inputs/lecture_07.tex} \input{inputs/lecture_07.tex}
@ -54,6 +55,7 @@
\section{Appendix} \section{Appendix}
\input{inputs/a_0_distributions.tex} \input{inputs/a_0_distributions.tex}
\end{landscape} \end{landscape}
\input{inputs/lecture_23.tex}
\cleardoublepage \cleardoublepage
\printvocabindex \printvocabindex