branching process

This commit is contained in:
Josia Pietsch 2023-07-20 15:13:06 +02:00
parent 5e9da4cef1
commit ef988f8a5c
Signed by: josia
GPG key ID: E70B571D66986A2D
4 changed files with 63 additions and 9 deletions

View file

@ -99,7 +99,7 @@ characteristic functions of Fourier transforms.
If $\mu$ and $\nu$ have Lebesgue densities $f_\mu$ and $f_\nu$,
then the convolution has Lebesgue density
\[
f_{\mu \ast \nu}(x) \coloneqq
f_{\mu \ast \nu}(x) =
\int_{\R^d} f_\mu(x - t) f_\nu(t) \lambda^d(\dif t).
\]
\end{fact}

View file

@ -274,13 +274,12 @@ We have shown, that $\mu_{n_k} \implies \mu$ along a subsequence.
We still need to show that $\mu_n \implies \mu$.
\begin{fact}
Suppose $a_n$ is a bounded sequence in $\R$,
such that any subsequence has a subsequence
that converges to $a \in \R$.
such that any convergent subsequence converges to $a \in \R$.
Then $a_n \to a$.
\end{fact}
\begin{subproof}
\notes
\end{subproof}
% \begin{subproof}
% \notes
% \end{subproof}
Assume that $\mu_n$ does not converge to $\mu$.
By \autoref{lec10_thm1}, pick a continuity point $x_0$ of $F$,
such that $F_n(x_0) \not\to F(x_0)$.
@ -292,6 +291,11 @@ which converges.
$G_1, G_2, \ldots$ is a subsequence of $F_1, F_2,\ldots$.
However $G_1, G_2, \ldots$ is not converging to $F$,
as this would fail at $x_0$. This is a contradiction.
\end{refproof}
\begin{refproof}{genlevycontinuity}
% TODO TODO TODO
\end{refproof}
% IID is over now

View file

@ -183,9 +183,23 @@ Recall
\bE(X Y | \cG) \le \bE(|X|^p | \cG)^{\frac{1}{p}} \bE(|Y|^q | \cG)^{\frac{1}{q}}.
\]
\end{theorem}
\begin{proof}
\todo{Exercise}
\end{proof}
% TODO
% \begin{proof}
% Take some $G \in \cG$.
% We first consider the case of $|X(\omega)|^p, |Y(\omega)|^p > 0$
% a.s.~for $\omega \in G$.
% Then
% \begin{IEEEeqnarray*}{rCl}
% \int_G\frac{\bE[|XY| ~ |\cG]}%
% {\bE[\bE[|X|^p | \cG]^{\frac{1}{p}} \bE[|Y|^p| \cG]^{\frac{1}{q}}}
% \dif \bP
% &=& \int_G \frac{|X|}{\bE[|X|^p]^{\frac{1}{p}}} \frac{|Y|}{\bE[|Y|^q]^{\frac{1}{q}}}
% \dif \bP\\
% &\le& \left(\int_G \frac{|X|^p}{\bE[|X|^p]} \dif \bP\right)^p
% \left(\int_G \frac{|Y|^q}{\bE[|Y|^q]} \dif \bP\right)^q\\
% &=& \bE[\One_G]
% \end{IEEEeqnarray*}
% \end{proof}
\begin{theorem}[Tower property]
\label{ceprop10}

View file

@ -119,6 +119,42 @@ we need the following theorem, which we won't prove here:
we get the convergence.
\end{refproof}
\begin{example}+[\vocab{Branching Process}; Exercise 10.1, 12.4]
Let $(Y_{n,k})_{n \in \N_0, k \in \N}$ be i.i.d.~with values in $\N_0$
such that $0 < \bE[Y_{n,k}] = m < \infty$.
Define
\[
S_0 \coloneqq 1, S_n \coloneqq \sum_{k=1}^{S_{n-1}} Y_{n-1,k}
\]
and let $M_n \coloneqq \frac{S_n}{m^n}$.
$S_n$ models the size of a population.
\begin{claim}
$M_n$ is a martingale.
\end{claim}
\begin{subproof}
We have
\begin{IEEEeqnarray*}{rCl}
\bE[M_{n+1} - M_n | \cF_n]
&=& \frac{1}{m^n} \left( \frac{1}{m}\sum_{k=1}^{S_{n}} \bE[X_{n,k}] - S_n\right)\\
&=& \frac{1}{m^n}(S_n - S_n).
\end{IEEEeqnarray*}
\end{subproof}
\begin{claim}
$(M_n)_{n \in \N}$ is bounded in $L^2$ iff $m > 1$.
\end{claim}
\todo{TODO}
\begin{claim}
If $m > 1$ and $M_n \to M_\infty$,
then
\[
\Var(M_\infty) = \sigma^2(m(m-1))^{-1}.
\]
\end{claim}
\todo{TODO}
\end{example}
\subsection{Stopping Times}
\begin{definition}[Stopping time]