Lyapunov CLT

This commit is contained in:
Josia Pietsch 2023-07-13 00:17:26 +02:00
parent b501f621aa
commit ecf530d05f
Signed by untrusted user who does not match committer: josia
GPG key ID: E70B571D66986A2D

View file

@ -35,7 +35,8 @@ if $X_1, X_2,\ldots$ are i.i.d.~with $ \mu = \bE[X_1]$,
and $S_n \coloneqq \sqrt{\sum_{i=1}^n \sigma_i^2}$. and $S_n \coloneqq \sqrt{\sum_{i=1}^n \sigma_i^2}$.
Then, assume that, for some $\delta > 0$, Then, assume that, for some $\delta > 0$,
\[ \[
\lim_{n \to \infty} \sum_{i=1}^{n} \bE[(X_i - \mu_i)^{2 + \delta}] = 0 \lim_{n \to \infty} \frac{1}{S_n^{2+\delta}}
\sum_{i=1}^{n} \bE[(X_i - \mu_i)^{2 + \delta}] = 0
\] \]
(\vocab{Lyapunov condition}). (\vocab{Lyapunov condition}).
Then the CLT holds. Then the CLT holds.