added definition of conditional probability
This commit is contained in:
parent
eeb3208de4
commit
c39ae924fe
2 changed files with 27 additions and 40 deletions
|
@ -78,6 +78,15 @@ We now want to generalize this to arbitrary random variables.
|
||||||
is a constant random variable.
|
is a constant random variable.
|
||||||
\end{remark}
|
\end{remark}
|
||||||
|
|
||||||
|
\begin{definition}[Conditional probability]
|
||||||
|
Let $A \subseteq \Omega$ be an event and $\cG \subseteq \cF$
|
||||||
|
a sub-$\sigma$-algebra.
|
||||||
|
We define the \vocab{conditional probability} of $A$ given $\cG$ by
|
||||||
|
\[
|
||||||
|
\bP[A | \cG] \coloneqq \bE[\One_A | \cG].
|
||||||
|
\]
|
||||||
|
\end{definition}
|
||||||
|
|
||||||
\paragraph{Plan}
|
\paragraph{Plan}
|
||||||
We will give two different proves of \autoref{conditionalexpectation}.
|
We will give two different proves of \autoref{conditionalexpectation}.
|
||||||
The first one will use orthogonal projections.
|
The first one will use orthogonal projections.
|
||||||
|
|
|
@ -1,5 +1,4 @@
|
||||||
\lecture{21}{2023-06-29}{}
|
\lecture{21}{2023-06-29}{}
|
||||||
% TODO: replace bf
|
|
||||||
|
|
||||||
This is the last lecture relevant for the exam.
|
This is the last lecture relevant for the exam.
|
||||||
(Apart from lecture 22 which will be a repetion).
|
(Apart from lecture 22 which will be a repetion).
|
||||||
|
@ -12,18 +11,18 @@ This is the last lecture relevant for the exam.
|
||||||
\begin{notation}
|
\begin{notation}
|
||||||
Let $E$ be a complete, separable metric space (e.g.~$E = \R$).
|
Let $E$ be a complete, separable metric space (e.g.~$E = \R$).
|
||||||
Suppose that for all $x \in E$ we have a probability measure
|
Suppose that for all $x \in E$ we have a probability measure
|
||||||
$\bfP(x, \dif y)$ on $E$.
|
$\mathbf{P}(x, \dif y)$ on $E$.
|
||||||
% i.e. $\mu(A) \coloneqq \int_A \bP(x, \dif y)$ is a probability measure.
|
% i.e. $\mu(A) \coloneqq \int_A \bP(x, \dif y)$ is a probability measure.
|
||||||
Such a probability measure is a called
|
Such a probability measure is a called
|
||||||
a \vocab{transition probability measure}.
|
a \vocab{transition probability measure}.
|
||||||
\end{notation}
|
\end{notation}
|
||||||
\begin{examle}
|
\begin{example}
|
||||||
$E =\R$,
|
$E =\R$,
|
||||||
\[\bfP(x, \dif y) = \frac{1}{\sqrt{2 \pi} } e^{- \frac{(x-y)^2}{2}} \dif y\]
|
\[\mathbf{P}(x, \dif y) = \frac{1}{\sqrt{2 \pi} } e^{- \frac{(x-y)^2}{2}} \dif y\]
|
||||||
is a transition probability measure.
|
is a transition probability measure.
|
||||||
\end{examle}
|
\end{example}
|
||||||
\begin{example}[Simple random walk as a transition probability measure]
|
\begin{example}[Simple random walk as a transition probability measure]
|
||||||
$E = \Z$, $\bfP(x, \dif y)$
|
$E = \Z$, $\mathbf{P}(x, \dif y)$
|
||||||
assigns mass $\frac{1}{2}$ to $y = x+1$ and $y = x -1$.
|
assigns mass $\frac{1}{2}$ to $y = x+1$ and $y = x -1$.
|
||||||
\end{example}
|
\end{example}
|
||||||
|
|
||||||
|
@ -32,26 +31,26 @@ This is the last lecture relevant for the exam.
|
||||||
$x \in E$
|
$x \in E$
|
||||||
define
|
define
|
||||||
\[
|
\[
|
||||||
(\bfP f)(x) \coloneqq \int_E f(y) \bfP(x, \dif y).
|
(\mathbf{P} f)(x) \coloneqq \int_E f(y) \mathbf{P}(x, \dif y).
|
||||||
\]
|
\]
|
||||||
This $\bfP$ is called a \vocab{transition operator}.
|
This $\mathbf{P}$ is called a \vocab{transition operator}.
|
||||||
\end{definition}
|
\end{definition}
|
||||||
\begin{fact}
|
\begin{fact}
|
||||||
If $f \ge 0$, then $(\bfP f)(\cdot ) \ge 0$.
|
If $f \ge 0$, then $(\mathbf{P} f)(\cdot ) \ge 0$.
|
||||||
|
|
||||||
If $f \equiv 1$, we have $(\bfP f) \equiv 1$.
|
If $f \equiv 1$, we have $(\mathbf{P} f) \equiv 1$.
|
||||||
\end{fact}
|
\end{fact}
|
||||||
|
|
||||||
\begin{notation}
|
\begin{notation}
|
||||||
Let $\bfI$ denote the \vocab{identity operator},
|
Let $\mathbf{I}$ denote the \vocab{identity operator},
|
||||||
i.e.
|
i.e.
|
||||||
\[
|
\[
|
||||||
(\bfI f)(x) = f(x)
|
(\mathbf{I} f)(x) = f(x)
|
||||||
\]
|
\]
|
||||||
for all $f$.
|
for all $f$.
|
||||||
Then for a transition operator $\bfP$ we write
|
Then for a transition operator $\mathbf{P}$ we write
|
||||||
\[
|
\[
|
||||||
\bfL \coloneqq \bfI - \bfP.
|
\mathbf{L} \coloneqq \mathbf{I} - \mathbf{P}.
|
||||||
\]
|
\]
|
||||||
\end{notation}
|
\end{notation}
|
||||||
|
|
||||||
|
@ -71,16 +70,16 @@ is the unique solution to this problem.
|
||||||
Let $(\Omega, \cF, \{\cF_n\}_n, \bP_x)$
|
Let $(\Omega, \cF, \{\cF_n\}_n, \bP_x)$
|
||||||
be a filtered probability space, where for every $x \in \R$,
|
be a filtered probability space, where for every $x \in \R$,
|
||||||
$\bP_x$ is a probability measure.
|
$\bP_x$ is a probability measure.
|
||||||
Let $\bE_x$ denote expectation with respect to $\bfP(x, \cdot )$.
|
Let $\bE_x$ denote expectation with respect to $\mathbf{P}(x, \cdot )$.
|
||||||
Then $(X_n)_{n \ge 0}$ is a \vocab{Markov chain} starting at $x \in \R$
|
Then $(X_n)_{n \ge 0}$ is a \vocab{Markov chain} starting at $x \in \R$
|
||||||
with \vocab[Markov chain!Transition probability]{transition probability}
|
with \vocab[Markov chain!Transition probability]{transition probability}
|
||||||
$\bfP(x, \cdot )$ if
|
$\mathbf{P}(x, \cdot )$ if
|
||||||
\begin{enumerate}[(i)]
|
\begin{enumerate}[(i)]
|
||||||
\item $\bP_x[X_0 = x] = 1$,
|
\item $\bP_x[X_0 = x] = 1$,
|
||||||
\item for all bounded, measurable $f: \R \to \R$,
|
\item for all bounded, measurable $f: \R \to \R$,
|
||||||
\[\bE_x[f(X_{n+1}) | \cF_n] \overset{\text{a.s.}}{=}%
|
\[\bE_x[f(X_{n+1}) | \cF_n] \overset{\text{a.s.}}{=}%
|
||||||
\bE_{x}[f(X_{n+1}) | X_n] = %
|
\bE_{x}[f(X_{n+1}) | X_n] = %
|
||||||
\int f(y) \bfP(X_n, \dif y).\]
|
\int f(y) \mathbf{P}(X_n, \dif y).\]
|
||||||
\end{enumerate}
|
\end{enumerate}
|
||||||
(Recall $\cF_n = \sigma(X_1,\ldots, X_n)$.)
|
(Recall $\cF_n = \sigma(X_1,\ldots, X_n)$.)
|
||||||
\end{definition}
|
\end{definition}
|
||||||
|
@ -92,12 +91,6 @@ is the unique solution to this problem.
|
||||||
\]
|
\]
|
||||||
\end{example}
|
\end{example}
|
||||||
|
|
||||||
\begin{definition}[Conditional probability]
|
|
||||||
\[
|
|
||||||
\bP[A | \cG] \coloneqq \bE[\One_A | \cG].
|
|
||||||
\]
|
|
||||||
\end{definition}
|
|
||||||
|
|
||||||
\begin{example}
|
\begin{example}
|
||||||
Let $\xi_i$ be i.i.d.~with$\bP[\xi_i = 1] = \bP[\xi_i = -1] = \frac{1}{2}$
|
Let $\xi_i$ be i.i.d.~with$\bP[\xi_i = 1] = \bP[\xi_i = -1] = \frac{1}{2}$
|
||||||
and define $X_n \coloneqq \sum_{i=1}^{n} \xi_i$.
|
and define $X_n \coloneqq \sum_{i=1}^{n} \xi_i$.
|
||||||
|
@ -105,14 +98,8 @@ is the unique solution to this problem.
|
||||||
Intuitively, conditioned on $X_n$, $X_{n+1}$ should
|
Intuitively, conditioned on $X_n$, $X_{n+1}$ should
|
||||||
be independent of $\sigma(X_1,\ldots, X_{n-1})$.
|
be independent of $\sigma(X_1,\ldots, X_{n-1})$.
|
||||||
|
|
||||||
For a set $B$, we have
|
|
||||||
\[
|
|
||||||
\bP_0[X_{n+1} \in B| \sigma(X_1,\ldots, X_n)]
|
|
||||||
= \bE[\One_{X_n + \xi_{n+1} \in B} | \sigma(X_1,\ldots, X_n)]
|
|
||||||
= \bE[\One_{X_n + \xi_{n+1} \in B} | \sigma(X_n)].
|
|
||||||
\]
|
|
||||||
|
|
||||||
\begin{claim}
|
\begin{claim}
|
||||||
|
For a set $B$, we have
|
||||||
$\bE[\One_{X_{n+1} \in B} | \sigma(X_1,\ldots, X_n)] = \bE[\One_{X_{n+1} \in B} | \sigma(X_n)]$.
|
$\bE[\One_{X_{n+1} \in B} | \sigma(X_1,\ldots, X_n)] = \bE[\One_{X_{n+1} \in B} | \sigma(X_n)]$.
|
||||||
\end{claim}
|
\end{claim}
|
||||||
\begin{subproof}
|
\begin{subproof}
|
||||||
|
@ -120,16 +107,7 @@ is the unique solution to this problem.
|
||||||
\end{subproof}
|
\end{subproof}
|
||||||
\end{example}
|
\end{example}
|
||||||
|
|
||||||
|
{ \large\color{red}
|
||||||
%TODO
|
|
||||||
|
|
||||||
|
|
||||||
|
|
||||||
|
|
||||||
|
|
||||||
|
|
||||||
|
|
||||||
{ \huge\color{red}
|
|
||||||
New information after this point is not relevant for the exam.
|
New information after this point is not relevant for the exam.
|
||||||
}
|
}
|
||||||
Stopping times and optional stopping are very relevant for the exam,
|
Stopping times and optional stopping are very relevant for the exam,
|
||||||
|
|
Loading…
Reference in a new issue