diff --git a/inputs/lecture_14.tex b/inputs/lecture_14.tex new file mode 100644 index 0000000..d65077f --- /dev/null +++ b/inputs/lecture_14.tex @@ -0,0 +1,255 @@ +\lecture{14}{2023-06-06}{} + +We want to derive some properties of conditional expectation. + +\begin{theorem}[Law of total expectation] % Thm 1 + \label{ceprop1} + \label{totalexpectation} + \[ + \bE[\bE[X | \cG ]] = \bE[X]. + \] +\end{theorem} +\begin{proof} + Apply (b) from the definition for $G = \Omega \in \cG$. +\end{proof} +\begin{theorem} % Thm 2 + \label{ceprop2} + If $X$ is $\cG$-measurable, then $X = \bE[X | \cG]$ a.s.. +\end{theorem} +\begin{proof} + Suppose $\bP[X \neq Y] > 0$. + Without loss of generality $\bP[X > Y] > 0$. + Hence $\bP[ X > Y + \frac{1}{n}]> 0$ for some $n \in \N$. + Let $A \coloneqq \{X > Y + \frac{1}{n}\}$. + % TODO +\end{proof} + +\begin{example} + Suppose $X \in L^1(\bP)$, $\cG \coloneqq \sigma(X)$. + Then $X$ is measurable with respect to $\cG$. + Hence $\bE[X | \cG] = X$. +\end{example} + +\begin{theorem}[Linearity] + \label{ceprop3} + \label{celinearity} + For all $a,b \in \R$ + we have + \[ + \bE[a X_1 + bX_2 | \cG] = a \bE[X_1 | \cG] + b \bE[X_2|\cG]. + \] +\end{theorem} +\begin{proof} + Trivial % TODO +\end{proof} + +\begin{theorem}[Positivity] + \label{ceprop4} + % 4 + \label{cpositivity} + If $X \ge 0$, then $\bE[X | \cG] \ge 0$ a.s. +\end{theorem} +\begin{proof} + Let $W $ be a version of $\E[X | \cG]$. + Suppose $\bP[ W < 0] > 0$. + Then $G \coloneqq \{W < -\frac{1}{n}\} \in \cG$ + For some $n \in \N$, we have $\bP[G] > 0$. + However it follows that + \[ + \int_G \bP[X | \cG] \dif \bP \le -\frac{1}{n} \bP[G] < 0 \le \int_G X \dif \bP. + \] +\end{proof} +\begin{theorem}[Conditional monotone convergence theorem] + \label{ceprop5} + % 5 + \label{mcmt} + Let $X_n,X \in L^1(\Omega, \cF, \bP)$. + Suppose $X_n \ge 0$ with $X_n \uparrow X$. + Then $\bE[X_n|\cG] \uparrow \bE[X|\cG]$. + +\end{theorem} +\begin{proof} + Let $Z_n$ be a version of $\bE[X_n | Y]$. + Since $X_n \ge 0$ and $X_n \uparrow$, + by \autoref{cpositivity}, + we have + \[ + \bE[X_n | \cG] \overset{\text{a.s.}}{\ge } 0 + \] + and + \[ + \bE[X_n | \cG] \uparrow \text{a.s.} + \] + (consider $X_{n+1} - X_n$ ). + + Define $Z \coloneqq \limsup_{n \to \infty} Z_n$. + Then $Z$ is $\cG$-measurable + and $Z_n \uparrow Z$ a.s. + + Take some $G \in \cG$. + We know by (b) % TODO REF + that $\be[Z_n \One_G] = \bE[X_n \One_G]$. + The LHS increases to $\bE[Z \One_G]$ by the monotone + convergence theorem. + Again by MCT, $\bE[X_n \One_G]$ increases to + $\bE[X \One_G]$. + Hence $Z$ is a version of $\bE[X | \cG]$. +\end{proof} + +\begin{theorem}[Conditional Fatou] + \label{ceprop6} + \label{cfatou} + Let $X_n \in L^1(\Omega, \cF, \bP)$, $X_n \ge 0$. + Then + \[ + \bE[ \liminf_{n \to \infty} X_n | \cG] \le \liminf_{n \to \infty} \bE[X_n | \cG]. + \] +\end{theorem} +\begin{proof} + \todo{in the notes} +\end{proof} +\begin{theorem}[Conditional dominated convergence theorem] + \label{ceprop7} + \label{cdct} + Let $X_n,X \in L^1(\Omega, \cF, \bP)$. + Suppose $|X_n(\omega)| < X(\omega)$ a.e.~ + and $\int |X| \dif \bP < \infty$. + Then $X_n(\omega) \to X\left( \omega \right) \implies \bE[ X_n | \cG] \to \bE[X | \cG]$. + +\end{theorem} +\begin{proof} + \todo{in the notes} +\end{proof} + +Recall +\begin{theorem}[Jensen's inequality] + If $c : \R \to \R$ is convex and $\bE[|c \circ X|] < \infty$, + then $\bE[c \circ X] \ge c(\bE[X])$. +\end{theorem} + +For conditional expectation, we have +\begin{theorem}[Conditional Jensen's inequality] + \label{ceprop8} + \label{cjensen} + Let $X \in L^1(\Omega, \cF, \bP)$. + If $c : \R \to \R$ is convex and $\bE[|c \circ X|] < \infty$, + then $\bE[c \circ X | \cG] \ge c(\bE[X | \cG])$ a.s. +\end{theorem} +\begin{fact} + \label{convapprox} + If $c$ is convex, then there are two sequences of real numbers + $a_n, b_n \in \R$ + such that + \[ + c(x) = \sup_n(a_n x + b_n). + \] +\end{fact} +\begin{refproof}{cjensen} + By \autoref{convapprox}, $c(x) \ge a_n X + b_n$ + for all $n$. + Hence + \[ + \bE[c(X) | \cG] \ge a_n \bE[X | \cG] + \bE[b_n | \cG] + = a_n \bE[X | \cG] + b_n \text{a.s.} + \] + for all $n$. + Using that a countable union of sets o f measure zero has measure zero, + we conclude that a.s~this happens simultaneously for all $n$. + Hence + \[ + \bE[c(X) | \cG] \ge \sup_n (a_n \bE[X | \cG] + b_n) \overset{\text{\autoref{convapprox}}}{=} c(\bE(X | \cG)). + \] +\end{refproof} + +Recall +\begin{theorem}[Hölder's inequality] + Let $p,q \ge 1$ such that $\frac{1}{p} + \frac{1}{q} = 1$. + Suppose $X \in L^p(\bP)$ and $Y \in L^q(\bP)$. + Then + \[ + \bE(X Y) \le \underbrace{\bE(|X|^p)^{\frac{1}{p}}}_{\text{\reflectbox{$\coloneqq$}} \|X\|_{L^p}} \bE(|Y|^q)^{\frac{1}{q}}. + \] +\end{theorem} + +\begin{theorem}[Conditional Hölder's inequality] + \label{ceprop9} + \label{choelder} + Let $p,q \ge 1$ such that $\frac{1}{p} + \frac{1}{q} = 1$. + Suppose $X \in L^p(\bP)$ and $Y \in L^q(\bP)$. + Then + \[ + \bE(X Y | \cG) \le \bE(|X|^p | \cG)^{\frac{1}{p}} \bE(|Y|^q | \cG)^{\frac{1}{q}}. + \] +\end{theorem} +\begin{proof} + Similar to the proof of Hölder's inequality. + \todo{Exercise} +\end{proof} + +\begin{theorem}[Tower property] + % 10 + \label{ceprop10} + \label{ctower} + Suppose $\cF \supset \cG \supset \cH$ are sub-$\sigma$-algebras. + Then + \[ + \bE\left[\bE[X | \cG] \mid \cH\right] = \bE[X | \cH]. + \] +\end{theorem} +\begin{proof} + \todo{Exercise} +\end{proof} + +\begin{theorem}[Taking out what is known] + % 11 + \label{ceprop11} + \label{takingoutwhatisknown} + + If $Y$ is $\cG$-measurable and bounded, then + \[ + \bE[YX| \cG] \overset{\text{a.s.}}{=} Y \bE[X | \cG]. + \] +\end{theorem} +\begin{proof} + Assume w.l.o.g.~$X \ge 0$. +Assume $Y = \One_B$, then $Y$ simple, then take the limit (using that $Y$ is bounded). + \todo{Exercise} +\end{proof} + +\begin{definition} + Let $\cG$ and $\cH$ be $\sigma$-algebras. + We call $\cG$ and $\cH$ \vocab[$\sigma$-algebra!independent]{independent}, + if % TODO +\end{definition} + +\begin{theorem}[Role of independence] + \label{ceprop12} + \label{roleofindependence} + If $\cH$ is a sub-$\sigma$-algebra of $\cF$ and $\cH$ is independent + of $\sigma(\sigma(X), \cG)$, then + \[ + \bE[X | \sigma(\cG, \cH)] \overset{\text{a.s.}}{=} \bE[X | \cG]. + \] +\end{theorem} +\begin{example} + If $X$ is independent of $\cG$, + then $\bE[X | \cG] \overset{\text{a.s.}}{=} \bE[X]$. +\end{example} +\begin{example}[Martingale property of the simple random walk] + Suppose $X_1,X_2,\ldots$ are i.i.d.~with $\bP[X_i = 1] = \bP[X_i = -1] = \frac{1}{2}$. + Let $S_n \coloneqq \sum_{i=1}^n X_i$ be the \vocab{simple random walk}. + Let $\cF$ denote the $\sigma$-algebra on the product space. + Define $\cF_n \coloneqq \sigma(X_1,\ldots)$. + Intuitively, $\cF_n$ contains all the information gathered until time $n$. + We have $\cF_1 \subset \cF_2 \subset \cF_3 \subset \ldots$ + + For $\bE[S_{n+1} | \cF_n]$ we obtain + \begin{IEEEeqnarray*}{rCl} + \bE[S_{n+1} | \cF_n] &\overset{\autoref{celinearity}}{=}& + \bE[S_n | \cF_n] + \bE[X_{n+1} | \cF_n]\\ + &\overset{\text{a.s.}}{=}& S_n + \bE[X_{n+1} | \cF_n]\\ + &\overset{\text{\autoref{ceprop12}}}{=}& S_{n} + \bE[X_n]\\ + &=& S_n + \end{IEEEeqnarray*} + +\end{example}