fixed Lindeberg CLT
This commit is contained in:
parent
eb2d40258a
commit
ab1a893dfc
1 changed files with 3 additions and 1 deletions
|
@ -16,7 +16,9 @@ if $X_1, X_2,\ldots$ are i.i.d.~with $ \mu = \bE[X_1]$,
|
|||
Assume $X_1, X_2, \ldots,$ are independent (but not necessarily identically distributed) with $\mu_i = \bE[X_i] < \infty$ and $\sigma_i^2 = \Var(X_i) < \infty$.
|
||||
Let $S_n = \sqrt{\sum_{i=1}^{n} \sigma_i^2}$
|
||||
and assume that
|
||||
\[\lim_{n \to \infty} \frac{1}{S_n^2} \bE\left[(X_i - \mu_i)^2 \One_{|X_i - \mu_i| > \epsilon S_n}\right] = 0\]
|
||||
\[\lim_{n \to \infty} \frac{1}{S_n^2} \sum_{i=1}^{n} \bE\left[
|
||||
(X_i - \mu_i)^2 \One_{|X_i - \mu_i| > \epsilon S_n}
|
||||
\right] = 0\]
|
||||
for all $\epsilon > 0$
|
||||
(\vocab{Lindeberg condition}\footnote{``The truncated variance is negligible compared to the variance.''}).
|
||||
|
||||
|
|
Loading…
Reference in a new issue