Bounded convergence theorem
This commit is contained in:
parent
6122151d4a
commit
9c517a05b2
3 changed files with 26 additions and 8 deletions
|
@ -136,10 +136,10 @@ However, some subsets can be easily described, e.g.
|
||||||
Let $Y = \bE[X | \cG]$ for some sub-$\sigma$-algebra $\cG$.
|
Let $Y = \bE[X | \cG]$ for some sub-$\sigma$-algebra $\cG$.
|
||||||
Then, by \autoref{cjensen}, $|Y| \le \bE[ |X| | \cG]$.
|
Then, by \autoref{cjensen}, $|Y| \le \bE[ |X| | \cG]$.
|
||||||
Hence $\bE[|Y|] \le \bE[|X|]$.
|
Hence $\bE[|Y|] \le \bE[|X|]$.
|
||||||
It follows that $\bP[|Y| > k] < \delta$
|
By Markov's inequality,
|
||||||
for $k$ suitably large,
|
it follows that $\bP[|Y| > k] < \delta$
|
||||||
since $\bE[|X|] \le \infty$.
|
for $k > \frac{\bE[|X|]}{\delta}$.
|
||||||
Note that $\{Y > k\} \in \cG$.
|
Note that $\{|Y| > k\} \in \cG$.
|
||||||
We have
|
We have
|
||||||
\begin{IEEEeqnarray*}{rCl}
|
\begin{IEEEeqnarray*}{rCl}
|
||||||
\bE[|Y| \One_{\{|Y| > k\} }] &<& \epsilon
|
\bE[|Y| \One_{\{|Y| > k\} }] &<& \epsilon
|
||||||
|
@ -200,7 +200,7 @@ However, some subsets can be easily described, e.g.
|
||||||
\end{IEEEeqnarray*}
|
\end{IEEEeqnarray*}
|
||||||
for all $\delta > 0$ and suitable $k$.
|
for all $\delta > 0$ and suitable $k$.
|
||||||
|
|
||||||
Hence $\bP[|X_n| \ge k] < \delta$ by Markov's inequality.
|
Hence $\bP[|X_n| > k] < \delta$ by Markov's inequality.
|
||||||
Then by \autoref{lec19f4} part (a) it follows that
|
Then by \autoref{lec19f4} part (a) it follows that
|
||||||
\[
|
\[
|
||||||
\int_{|X_n| > k} |X_n| \dif \bP \le \underbrace{\int |X - X_n| \dif \bP}_{< \epsilon} + \int_{|X_n| > k} |X| \dif \bP \le 2 \epsilon.
|
\int_{|X_n| > k} |X_n| \dif \bP \le \underbrace{\int |X - X_n| \dif \bP}_{< \epsilon} + \int_{|X_n| > k} |X| \dif \bP \le 2 \epsilon.
|
||||||
|
@ -232,7 +232,7 @@ Let $(\Omega, \cF, \bP)$ as always and let $(\cF_n)_n$ always be a filtration.
|
||||||
\begin{theorem}
|
\begin{theorem}
|
||||||
\label{ceismartingale}
|
\label{ceismartingale}
|
||||||
Let $X \in L^p$ for some $p \ge 1$
|
Let $X \in L^p$ for some $p \ge 1$
|
||||||
and $\bigcup_n \cF_n \to \cF$.
|
and $\bigcup_n \cF_n \to \cF \supseteq \sigma(X)$.
|
||||||
Then $X_n \coloneqq \bE[X | \cF_n]$ defines a martingale which converges
|
Then $X_n \coloneqq \bE[X | \cF_n]$ defines a martingale which converges
|
||||||
to $X$ in $L^p$.
|
to $X$ in $L^p$.
|
||||||
\end{theorem}
|
\end{theorem}
|
||||||
|
|
|
@ -45,7 +45,8 @@
|
||||||
\int | X - X'|^p \dif \bP &=& \int_{\{|X| > M\} } |X|^p \dif \bP \xrightarrow{M \to \infty} 0
|
\int | X - X'|^p \dif \bP &=& \int_{\{|X| > M\} } |X|^p \dif \bP \xrightarrow{M \to \infty} 0
|
||||||
\end{IEEEeqnarray*}
|
\end{IEEEeqnarray*}
|
||||||
as $\bP$ is regular,
|
as $\bP$ is regular,
|
||||||
i.e.~$\forall \epsilon > 0 . ~\exists k . ~\bP[|X|^p \in [-k,k] \ge 1-\epsilon$.
|
i.e.~$\forall \epsilon > 0 . ~\exists k . ~
|
||||||
|
\bP[|X|^p \in [-k,k]] \ge 1-\epsilon$.
|
||||||
|
|
||||||
Take some $\epsilon > 0$ and $M$ large enough such that
|
Take some $\epsilon > 0$ and $M$ large enough such that
|
||||||
\[
|
\[
|
||||||
|
@ -111,7 +112,7 @@ we need the following theorem, which we won't prove here:
|
||||||
\int_A X \dif \bP
|
\int_A X \dif \bP
|
||||||
&=& \lim_{k \to \infty} \int_A X_{n_k} \dif \bP\\
|
&=& \lim_{k \to \infty} \int_A X_{n_k} \dif \bP\\
|
||||||
&=& \lim_{k \to \infty} \bE[X_{n_k} \One_A]\\
|
&=& \lim_{k \to \infty} \bE[X_{n_k} \One_A]\\
|
||||||
&\overset{\text{for }n_k \ge m}{=}& \int_{k \to \infty} \bE[X_m \One_A].
|
&\overset{\text{for }n_k \ge m}{=}& \lim_{k \to \infty} \bE[X_m \One_A].
|
||||||
\end{IEEEeqnarray*}
|
\end{IEEEeqnarray*}
|
||||||
Hence $X_n = \bE[X | \cF_m]$ by the uniqueness of conditional expectation
|
Hence $X_n = \bE[X | \cF_m]$ by the uniqueness of conditional expectation
|
||||||
and by \autoref{ceismartingale},
|
and by \autoref{ceismartingale},
|
||||||
|
|
|
@ -215,6 +215,23 @@ from the lecture on stochastic.
|
||||||
\end{subproof}
|
\end{subproof}
|
||||||
\end{refproof}
|
\end{refproof}
|
||||||
|
|
||||||
|
\begin{theorem}[Bounded convergence theorem]
|
||||||
|
\label{thm:boundedconvergence}
|
||||||
|
Suppose that $X_n \xrightarrow{\bP} X$ and there exists
|
||||||
|
some $K$ such that $|X_n| \le K$ for all $n$.
|
||||||
|
Then $X_n \xrightarrow{L^1} X$.
|
||||||
|
\end{theorem}
|
||||||
|
\begin{proof}
|
||||||
|
Note that $|X| \le K$ a.s.~since
|
||||||
|
\[\bP[|X| \ge K + \epsilon] \le \bP[|X_n - X| > \epsilon]
|
||||||
|
\xrightarrow{n \to \infty} 0.\]
|
||||||
|
Hence
|
||||||
|
\begin{IEEEeqnarray*}{rCl}
|
||||||
|
\int |X_n - X| \dif \bP &\le& \int_{|X_n - X| \ge \epsilon} |X_n - X| \dif \bP + \epsilon\\
|
||||||
|
&\le &2K\bP[|X_n - X| \ge \epsilon] +\epsilon.
|
||||||
|
\end{IEEEeqnarray*}
|
||||||
|
\end{proof}
|
||||||
|
|
||||||
|
|
||||||
\subsection{Some Facts from Measure Theory}
|
\subsection{Some Facts from Measure Theory}
|
||||||
\begin{fact}+[Finite measures are {\vocab[Measure]{regular}}, Exercise 3.1]
|
\begin{fact}+[Finite measures are {\vocab[Measure]{regular}}, Exercise 3.1]
|
||||||
|
|
Loading…
Reference in a new issue