fixed doob's lp inequality
This commit is contained in:
parent
c27e6b5f34
commit
9884449627
1 changed files with 7 additions and 4 deletions
|
@ -143,7 +143,8 @@ Now let $p \ge 1$ be not necessarily $2$.
|
|||
First, we need a very important inequality:
|
||||
\begin{theorem}[Doob's $L^p$ inequality]
|
||||
\label{dooblp}
|
||||
Suppose that $(X_n)_n$ is a sub-martingale.
|
||||
Suppose that $(X_n)_n$ is a martingale
|
||||
or a non-negative submartingale.
|
||||
Let $X_n^\ast \coloneqq \max \{|X_1|, |X_2|, \ldots, |X_n|\}$
|
||||
denote the \vocab{running maximum}.
|
||||
\begin{enumerate}[(1)]
|
||||
|
@ -159,7 +160,7 @@ First, we need a very important inequality:
|
|||
In order to prove \autoref{dooblp}, we first need
|
||||
\begin{lemma}
|
||||
\label{dooplplemma}
|
||||
Let $p > 1$ and $X,Y$ non-negative random variable
|
||||
Let $p > 1$ and $X,Y$ non-negative random variables
|
||||
such that
|
||||
\[
|
||||
\forall \ell > 0 .~ \bP[Y \ge \ell] \le
|
||||
|
@ -213,8 +214,10 @@ In order to prove \autoref{dooblp}, we first need
|
|||
\bP[E_j] \overset{\text{Markov}}{\le } \frac{1}{\ell} \int_{E_j} |X_j| \dif \bP
|
||||
\label{lec18eq2star}
|
||||
\end{equation}
|
||||
Since $(X_n)_n$ is a sub-martingale, $(|X_n|)_n$ is also a sub-martingale
|
||||
(by \autoref{cjensen}).
|
||||
We have that $(|X_n|)_n$ is a submartingale,
|
||||
by \autoref{cor:convexmartingale}
|
||||
in the case of $X_n$ being a martingale
|
||||
and trivially if $X_n$ is non-negative.
|
||||
Hence
|
||||
\begin{IEEEeqnarray*}{rCl}
|
||||
\bE[\One_{E_j}(|X_n| - |X_{j}|) | \cF_j]
|
||||
|
|
Loading…
Reference in a new issue